Metamath Proof Explorer


Theorem voliunlem3

Description: Lemma for voliun . (Contributed by Mario Carneiro, 20-Mar-2014)

Ref Expression
Hypotheses voliunlem.3 φF:domvol
voliunlem.5 φDisjiFi
voliunlem.6 H=nvol*xFn
voliunlem3.1 S=seq1+G
voliunlem3.2 G=nvolFn
voliunlem3.4 φivolFi
Assertion voliunlem3 φvolranF=supranS*<

Proof

Step Hyp Ref Expression
1 voliunlem.3 φF:domvol
2 voliunlem.5 φDisjiFi
3 voliunlem.6 H=nvol*xFn
4 voliunlem3.1 S=seq1+G
5 voliunlem3.2 G=nvolFn
6 voliunlem3.4 φivolFi
7 1 2 3 voliunlem2 φranFdomvol
8 mblvol ranFdomvolvolranF=vol*ranF
9 7 8 syl φvolranF=vol*ranF
10 1 frnd φranFdomvol
11 mblss xdomvolx
12 reex V
13 12 elpw2 x𝒫x
14 11 13 sylibr xdomvolx𝒫
15 14 ssriv domvol𝒫
16 10 15 sstrdi φranF𝒫
17 sspwuni ranF𝒫ranF
18 16 17 sylib φranF
19 ovolcl ranFvol*ranF*
20 18 19 syl φvol*ranF*
21 nnuz =1
22 1zzd φ1
23 2fveq3 n=kvolFn=volFk
24 fvex volFkV
25 23 5 24 fvmpt kGk=volFk
26 25 adantl φkGk=volFk
27 2fveq3 i=kvolFi=volFk
28 27 eleq1d i=kvolFivolFk
29 28 rspccva ivolFikvolFk
30 6 29 sylan φkvolFk
31 26 30 eqeltrd φkGk
32 21 22 31 serfre φseq1+G:
33 4 feq1i S:seq1+G:
34 32 33 sylibr φS:
35 34 frnd φranS
36 ressxr *
37 35 36 sstrdi φranS*
38 supxrcl ranS*supranS*<*
39 37 38 syl φsupranS*<*
40 eqid seq1+nvol*Fn=seq1+nvol*Fn
41 eqid nvol*Fn=nvol*Fn
42 1 ffvelcdmda φnFndomvol
43 mblss FndomvolFn
44 42 43 syl φnFn
45 mblvol FndomvolvolFn=vol*Fn
46 42 45 syl φnvolFn=vol*Fn
47 2fveq3 i=nvolFi=volFn
48 47 eleq1d i=nvolFivolFn
49 48 rspccva ivolFinvolFn
50 6 49 sylan φnvolFn
51 46 50 eqeltrrd φnvol*Fn
52 40 41 44 51 ovoliun φvol*nFnsupranseq1+nvol*Fn*<
53 1 ffnd φFFn
54 fniunfv FFnnFn=ranF
55 53 54 syl φnFn=ranF
56 55 fveq2d φvol*nFn=vol*ranF
57 46 mpteq2dva φnvolFn=nvol*Fn
58 5 57 eqtrid φG=nvol*Fn
59 58 seqeq3d φseq1+G=seq1+nvol*Fn
60 4 59 eqtr2id φseq1+nvol*Fn=S
61 60 rneqd φranseq1+nvol*Fn=ranS
62 61 supeq1d φsupranseq1+nvol*Fn*<=supranS*<
63 52 56 62 3brtr3d φvol*ranFsupranS*<
64 ovolge0 ranF0vol*ranF
65 18 64 syl φ0vol*ranF
66 mnflt0 −∞<0
67 mnfxr −∞*
68 0xr 0*
69 xrltletr −∞*0*vol*ranF*−∞<00vol*ranF−∞<vol*ranF
70 67 68 69 mp3an12 vol*ranF*−∞<00vol*ranF−∞<vol*ranF
71 66 70 mpani vol*ranF*0vol*ranF−∞<vol*ranF
72 20 65 71 sylc φ−∞<vol*ranF
73 xrrebnd vol*ranF*vol*ranF−∞<vol*ranFvol*ranF<+∞
74 20 73 syl φvol*ranF−∞<vol*ranFvol*ranF<+∞
75 12 elpw2 ranF𝒫ranF
76 18 75 sylibr φranF𝒫
77 simpl x=ranFφx=ranF
78 77 sseq1d x=ranFφxranF
79 77 fveq2d x=ranFφvol*x=vol*ranF
80 79 eleq1d x=ranFφvol*xvol*ranF
81 simpll x=ranFφnx=ranF
82 81 ineq1d x=ranFφnxFn=ranFFn
83 fnfvelrn FFnnFnranF
84 53 83 sylan φnFnranF
85 elssuni FnranFFnranF
86 84 85 syl φnFnranF
87 86 adantll x=ranFφnFnranF
88 sseqin2 FnranFranFFn=Fn
89 87 88 sylib x=ranFφnranFFn=Fn
90 82 89 eqtrd x=ranFφnxFn=Fn
91 90 fveq2d x=ranFφnvol*xFn=vol*Fn
92 46 adantll x=ranFφnvolFn=vol*Fn
93 91 92 eqtr4d x=ranFφnvol*xFn=volFn
94 93 mpteq2dva x=ranFφnvol*xFn=nvolFn
95 94 adantrr x=ranFφknvol*xFn=nvolFn
96 95 3 5 3eqtr4g x=ranFφkH=G
97 96 seqeq3d x=ranFφkseq1+H=seq1+G
98 97 4 eqtr4di x=ranFφkseq1+H=S
99 98 fveq1d x=ranFφkseq1+Hk=Sk
100 difeq1 x=ranFxranF=ranFranF
101 difid ranFranF=
102 100 101 eqtrdi x=ranFxranF=
103 102 fveq2d x=ranFvol*xranF=vol*
104 ovol0 vol*=0
105 103 104 eqtrdi x=ranFvol*xranF=0
106 105 adantr x=ranFφkvol*xranF=0
107 99 106 oveq12d x=ranFφkseq1+Hk+vol*xranF=Sk+0
108 34 ffvelcdmda φkSk
109 108 adantl x=ranFφkSk
110 109 recnd x=ranFφkSk
111 110 addridd x=ranFφkSk+0=Sk
112 107 111 eqtrd x=ranFφkseq1+Hk+vol*xranF=Sk
113 fveq2 x=ranFvol*x=vol*ranF
114 113 adantr x=ranFφkvol*x=vol*ranF
115 112 114 breq12d x=ranFφkseq1+Hk+vol*xranFvol*xSkvol*ranF
116 115 expr x=ranFφkseq1+Hk+vol*xranFvol*xSkvol*ranF
117 116 pm5.74d x=ranFφkseq1+Hk+vol*xranFvol*xkSkvol*ranF
118 80 117 imbi12d x=ranFφvol*xkseq1+Hk+vol*xranFvol*xvol*ranFkSkvol*ranF
119 78 118 imbi12d x=ranFφxvol*xkseq1+Hk+vol*xranFvol*xranFvol*ranFkSkvol*ranF
120 119 pm5.74da x=ranFφxvol*xkseq1+Hk+vol*xranFvol*xφranFvol*ranFkSkvol*ranF
121 1 3ad2ant1 φxvol*xF:domvol
122 2 3ad2ant1 φxvol*xDisjiFi
123 simp2 φxvol*xx
124 simp3 φxvol*xvol*x
125 121 122 3 123 124 voliunlem1 φxvol*xkseq1+Hk+vol*xranFvol*x
126 125 3exp1 φxvol*xkseq1+Hk+vol*xranFvol*x
127 120 126 vtoclg ranF𝒫φranFvol*ranFkSkvol*ranF
128 76 127 mpcom φranFvol*ranFkSkvol*ranF
129 18 128 mpd φvol*ranFkSkvol*ranF
130 74 129 sylbird φ−∞<vol*ranFvol*ranF<+∞kSkvol*ranF
131 72 130 mpand φvol*ranF<+∞kSkvol*ranF
132 nltpnft vol*ranF*vol*ranF=+∞¬vol*ranF<+∞
133 20 132 syl φvol*ranF=+∞¬vol*ranF<+∞
134 rexr SkSk*
135 pnfge Sk*Sk+∞
136 108 134 135 3syl φkSk+∞
137 136 ex φkSk+∞
138 breq2 vol*ranF=+∞Skvol*ranFSk+∞
139 138 imbi2d vol*ranF=+∞kSkvol*ranFkSk+∞
140 137 139 syl5ibrcom φvol*ranF=+∞kSkvol*ranF
141 133 140 sylbird φ¬vol*ranF<+∞kSkvol*ranF
142 131 141 pm2.61d φkSkvol*ranF
143 142 ralrimiv φkSkvol*ranF
144 34 ffnd φSFn
145 breq1 z=Skzvol*ranFSkvol*ranF
146 145 ralrn SFnzranSzvol*ranFkSkvol*ranF
147 144 146 syl φzranSzvol*ranFkSkvol*ranF
148 143 147 mpbird φzranSzvol*ranF
149 supxrleub ranS*vol*ranF*supranS*<vol*ranFzranSzvol*ranF
150 37 20 149 syl2anc φsupranS*<vol*ranFzranSzvol*ranF
151 148 150 mpbird φsupranS*<vol*ranF
152 20 39 63 151 xrletrid φvol*ranF=supranS*<
153 9 152 eqtrd φvolranF=supranS*<