Metamath Proof Explorer


Theorem volivth

Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive B <_ ( volA ) , there is a measurable subset of A whose volume is B . (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Assertion volivth AdomvolB0volAxdomvolxAvolx=B

Proof

Step Hyp Ref Expression
1 simpll AdomvolB0volAB<volAAdomvol
2 mnfxr −∞*
3 2 a1i AdomvolB0volAB<volA−∞*
4 iccssxr 0volA*
5 simpr AdomvolB0volAB0volA
6 4 5 sselid AdomvolB0volAB*
7 6 adantr AdomvolB0volAB<volAB*
8 iccssxr 0+∞*
9 volf vol:domvol0+∞
10 9 ffvelcdmi AdomvolvolA0+∞
11 8 10 sselid AdomvolvolA*
12 11 adantr AdomvolB0volAvolA*
13 12 adantr AdomvolB0volAB<volAvolA*
14 0xr 0*
15 elicc1 0*volA*B0volAB*0BBvolA
16 14 12 15 sylancr AdomvolB0volAB0volAB*0BBvolA
17 5 16 mpbid AdomvolB0volAB*0BBvolA
18 17 simp2d AdomvolB0volA0B
19 18 adantr AdomvolB0volAB<volA0B
20 mnflt0 −∞<0
21 xrltletr −∞*0*B*−∞<00B−∞<B
22 20 21 mpani −∞*0*B*0B−∞<B
23 2 14 22 mp3an12 B*0B−∞<B
24 7 19 23 sylc AdomvolB0volAB<volA−∞<B
25 simpr AdomvolB0volAB<volAB<volA
26 xrre2 −∞*B*volA*−∞<BB<volAB
27 3 7 13 24 25 26 syl32anc AdomvolB0volAB<volAB
28 volsup2 AdomvolBB<volAnB<volAnn
29 1 27 25 28 syl3anc AdomvolB0volAB<volAnB<volAnn
30 nnre nn
31 30 ad2antrl AdomvolB0volAB<volAnB<volAnnn
32 31 renegcld AdomvolB0volAB<volAnB<volAnnn
33 27 adantr AdomvolB0volAB<volAnB<volAnnB
34 0red AdomvolB0volAB<volAnB<volAnn0
35 nngt0 n0<n
36 35 ad2antrl AdomvolB0volAB<volAnB<volAnn0<n
37 31 lt0neg2d AdomvolB0volAB<volAnB<volAnn0<nn<0
38 36 37 mpbid AdomvolB0volAB<volAnB<volAnnn<0
39 32 34 31 38 36 lttrd AdomvolB0volAB<volAnB<volAnnn<n
40 iccssre nnnn
41 32 31 40 syl2anc AdomvolB0volAB<volAnB<volAnnnn
42 ax-resscn
43 ssid
44 cncfss cncn
45 42 43 44 mp2an cncn
46 1 adantr AdomvolB0volAB<volAnB<volAnnAdomvol
47 eqid yvolAny=yvolAny
48 47 volcn AdomvolnyvolAny:cn
49 46 32 48 syl2anc AdomvolB0volAB<volAnB<volAnnyvolAny:cn
50 45 49 sselid AdomvolB0volAB<volAnB<volAnnyvolAny:cn
51 41 sselda AdomvolB0volAB<volAnB<volAnnunnu
52 cncff yvolAny:cnyvolAny:
53 49 52 syl AdomvolB0volAB<volAnB<volAnnyvolAny:
54 53 ffvelcdmda AdomvolB0volAB<volAnB<volAnnuyvolAnyu
55 51 54 syldan AdomvolB0volAB<volAnB<volAnnunnyvolAnyu
56 oveq2 y=nny=nn
57 56 ineq2d y=nAny=Ann
58 57 fveq2d y=nvolAny=volAnn
59 fvex volAnnV
60 58 47 59 fvmpt nyvolAnyn=volAnn
61 32 60 syl AdomvolB0volAB<volAnB<volAnnyvolAnyn=volAnn
62 inss2 Annnn
63 32 rexrd AdomvolB0volAB<volAnB<volAnnn*
64 iccid n*nn=n
65 63 64 syl AdomvolB0volAB<volAnB<volAnnnn=n
66 62 65 sseqtrid AdomvolB0volAB<volAnB<volAnnAnnn
67 32 snssd AdomvolB0volAB<volAnB<volAnnn
68 66 67 sstrd AdomvolB0volAB<volAnB<volAnnAnn
69 ovolsn nvol*n=0
70 32 69 syl AdomvolB0volAB<volAnB<volAnnvol*n=0
71 ovolssnul Annnnvol*n=0vol*Ann=0
72 66 67 70 71 syl3anc AdomvolB0volAB<volAnB<volAnnvol*Ann=0
73 nulmbl Annvol*Ann=0Anndomvol
74 68 72 73 syl2anc AdomvolB0volAB<volAnB<volAnnAnndomvol
75 mblvol AnndomvolvolAnn=vol*Ann
76 74 75 syl AdomvolB0volAB<volAnB<volAnnvolAnn=vol*Ann
77 61 76 72 3eqtrd AdomvolB0volAB<volAnB<volAnnyvolAnyn=0
78 19 adantr AdomvolB0volAB<volAnB<volAnn0B
79 77 78 eqbrtrd AdomvolB0volAB<volAnB<volAnnyvolAnynB
80 7 adantr AdomvolB0volAB<volAnB<volAnnB*
81 iccmbl nnnndomvol
82 32 31 81 syl2anc AdomvolB0volAB<volAnB<volAnnnndomvol
83 inmbl AdomvolnndomvolAnndomvol
84 46 82 83 syl2anc AdomvolB0volAB<volAnB<volAnnAnndomvol
85 9 ffvelcdmi AnndomvolvolAnn0+∞
86 8 85 sselid AnndomvolvolAnn*
87 84 86 syl AdomvolB0volAB<volAnB<volAnnvolAnn*
88 simprr AdomvolB0volAB<volAnB<volAnnB<volAnn
89 80 87 88 xrltled AdomvolB0volAB<volAnB<volAnnBvolAnn
90 oveq2 y=nny=nn
91 90 ineq2d y=nAny=Ann
92 91 fveq2d y=nvolAny=volAnn
93 fvex volAnnV
94 92 47 93 fvmpt nyvolAnyn=volAnn
95 31 94 syl AdomvolB0volAB<volAnB<volAnnyvolAnyn=volAnn
96 89 95 breqtrrd AdomvolB0volAB<volAnB<volAnnByvolAnyn
97 79 96 jca AdomvolB0volAB<volAnB<volAnnyvolAnynBByvolAnyn
98 32 31 33 39 41 50 55 97 ivthle AdomvolB0volAB<volAnB<volAnnznnyvolAnyz=B
99 41 sselda AdomvolB0volAB<volAnB<volAnnznnz
100 oveq2 y=zny=nz
101 100 ineq2d y=zAny=Anz
102 101 fveq2d y=zvolAny=volAnz
103 fvex volAnzV
104 102 47 103 fvmpt zyvolAnyz=volAnz
105 99 104 syl AdomvolB0volAB<volAnB<volAnnznnyvolAnyz=volAnz
106 105 eqeq1d AdomvolB0volAB<volAnB<volAnnznnyvolAnyz=BvolAnz=B
107 46 adantr AdomvolB0volAB<volAnB<volAnnznnvolAnz=BAdomvol
108 32 adantr AdomvolB0volAB<volAnB<volAnnznnvolAnz=Bn
109 99 adantrr AdomvolB0volAB<volAnB<volAnnznnvolAnz=Bz
110 iccmbl nznzdomvol
111 108 109 110 syl2anc AdomvolB0volAB<volAnB<volAnnznnvolAnz=Bnzdomvol
112 inmbl AdomvolnzdomvolAnzdomvol
113 107 111 112 syl2anc AdomvolB0volAB<volAnB<volAnnznnvolAnz=BAnzdomvol
114 inss1 AnzA
115 114 a1i AdomvolB0volAB<volAnB<volAnnznnvolAnz=BAnzA
116 simprr AdomvolB0volAB<volAnB<volAnnznnvolAnz=BvolAnz=B
117 sseq1 x=AnzxAAnzA
118 fveqeq2 x=Anzvolx=BvolAnz=B
119 117 118 anbi12d x=AnzxAvolx=BAnzAvolAnz=B
120 119 rspcev AnzdomvolAnzAvolAnz=BxdomvolxAvolx=B
121 113 115 116 120 syl12anc AdomvolB0volAB<volAnB<volAnnznnvolAnz=BxdomvolxAvolx=B
122 121 expr AdomvolB0volAB<volAnB<volAnnznnvolAnz=BxdomvolxAvolx=B
123 106 122 sylbid AdomvolB0volAB<volAnB<volAnnznnyvolAnyz=BxdomvolxAvolx=B
124 123 rexlimdva AdomvolB0volAB<volAnB<volAnnznnyvolAnyz=BxdomvolxAvolx=B
125 98 124 mpd AdomvolB0volAB<volAnB<volAnnxdomvolxAvolx=B
126 29 125 rexlimddv AdomvolB0volAB<volAxdomvolxAvolx=B
127 simpll AdomvolB0volAB=volAAdomvol
128 ssid AA
129 128 a1i AdomvolB0volAB=volAAA
130 simpr AdomvolB0volAB=volAB=volA
131 130 eqcomd AdomvolB0volAB=volAvolA=B
132 sseq1 x=AxAAA
133 fveqeq2 x=Avolx=BvolA=B
134 132 133 anbi12d x=AxAvolx=BAAvolA=B
135 134 rspcev AdomvolAAvolA=BxdomvolxAvolx=B
136 127 129 131 135 syl12anc AdomvolB0volAB=volAxdomvolxAvolx=B
137 17 simp3d AdomvolB0volABvolA
138 xrleloe B*volA*BvolAB<volAB=volA
139 6 12 138 syl2anc AdomvolB0volABvolAB<volAB=volA
140 137 139 mpbid AdomvolB0volAB<volAB=volA
141 126 136 140 mpjaodan AdomvolB0volAxdomvolxAvolx=B