Metamath Proof Explorer


Theorem vonioolem2

Description: The n-dimensional Lebesgue measure of open intervals. This is the first statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonioolem2.x φXFin
vonioolem2.a φA:X
vonioolem2.b φB:X
vonioolem2.n φX
vonioolem2.t φkXAk<Bk
vonioolem2.i I=kXAkBk
vonioolem2.c C=nkXAk+1n
vonioolem2.d D=nkXCnkBk
Assertion vonioolem2 φvolnXI=kXBkAk

Proof

Step Hyp Ref Expression
1 vonioolem2.x φXFin
2 vonioolem2.a φA:X
3 vonioolem2.b φB:X
4 vonioolem2.n φX
5 vonioolem2.t φkXAk<Bk
6 vonioolem2.i I=kXAkBk
7 vonioolem2.c C=nkXAk+1n
8 vonioolem2.d D=nkXCnkBk
9 1 vonmea φvolnXMeas
10 1zzd φ1
11 nnuz =1
12 1 adantr φnXFin
13 eqid domvolnX=domvolnX
14 2 adantr φnA:X
15 14 ffvelcdmda φnkXAk
16 nnrecre n1n
17 16 ad2antlr φnkX1n
18 15 17 readdcld φnkXAk+1n
19 18 fmpttd φnkXAk+1n:X
20 7 a1i φC=nkXAk+1n
21 1 mptexd φkXAk+1nV
22 21 adantr φnkXAk+1nV
23 20 22 fvmpt2d φnCn=kXAk+1n
24 23 feq1d φnCn:XkXAk+1n:X
25 19 24 mpbird φnCn:X
26 3 adantr φnB:X
27 12 13 25 26 hoimbl φnkXCnkBkdomvolnX
28 27 8 fmptd φD:domvolnX
29 nfv kφn
30 oveq2 n=m1n=1m
31 30 oveq2d n=mAk+1n=Ak+1m
32 31 mpteq2dv n=mkXAk+1n=kXAk+1m
33 32 cbvmptv nkXAk+1n=mkXAk+1m
34 7 33 eqtri C=mkXAk+1m
35 oveq2 m=n+11m=1n+1
36 35 oveq2d m=n+1Ak+1m=Ak+1n+1
37 36 mpteq2dv m=n+1kXAk+1m=kXAk+1n+1
38 simpr φnn
39 38 peano2nnd φnn+1
40 12 mptexd φnkXAk+1n+1V
41 34 37 39 40 fvmptd3 φnCn+1=kXAk+1n+1
42 ovexd φnkXAk+1n+1V
43 41 42 fvmpt2d φnkXCn+1k=Ak+1n+1
44 1red n1
45 nnre nn
46 45 44 readdcld nn+1
47 peano2nn nn+1
48 nnne0 n+1n+10
49 47 48 syl nn+10
50 44 46 49 redivcld n1n+1
51 50 ad2antlr φnkX1n+1
52 15 51 readdcld φnkXAk+1n+1
53 43 52 eqeltrd φnkXCn+1k
54 53 rexrd φnkXCn+1k*
55 ressxr *
56 3 ffvelcdmda φkXBk
57 55 56 sselid φkXBk*
58 57 adantlr φnkXBk*
59 45 ltp1d nn<n+1
60 nnrp nn+
61 47 nnrpd nn+1+
62 60 61 ltrecd nn<n+11n+1<1n
63 59 62 mpbid n1n+1<1n
64 50 16 63 ltled n1n+11n
65 64 ad2antlr φnkX1n+11n
66 51 17 15 65 leadd2dd φnkXAk+1n+1Ak+1n
67 ovexd φnkXAk+1nV
68 23 67 fvmpt2d φnkXCnk=Ak+1n
69 43 68 breq12d φnkXCn+1kCnkAk+1n+1Ak+1n
70 66 69 mpbird φnkXCn+1kCnk
71 56 adantlr φnkXBk
72 eqidd φnkXBk=Bk
73 71 72 eqled φnkXBkBk
74 icossico Cn+1k*Bk*Cn+1kCnkBkBkCnkBkCn+1kBk
75 54 58 70 73 74 syl22anc φnkXCnkBkCn+1kBk
76 29 75 ixpssixp φnkXCnkBkkXCn+1kBk
77 8 a1i φD=nkXCnkBk
78 27 elexd φnkXCnkBkV
79 77 78 fvmpt2d φnDn=kXCnkBk
80 fveq2 n=mCn=Cm
81 80 fveq1d n=mCnk=Cmk
82 81 oveq1d n=mCnkBk=CmkBk
83 82 ixpeq2dv n=mkXCnkBk=kXCmkBk
84 83 cbvmptv nkXCnkBk=mkXCmkBk
85 8 84 eqtri D=mkXCmkBk
86 fveq2 m=n+1Cm=Cn+1
87 86 fveq1d m=n+1Cmk=Cn+1k
88 87 oveq1d m=n+1CmkBk=Cn+1kBk
89 88 ixpeq2dv m=n+1kXCmkBk=kXCn+1kBk
90 ovex Cn+1kBkV
91 90 rgenw kXCn+1kBkV
92 ixpexg kXCn+1kBkVkXCn+1kBkV
93 91 92 ax-mp kXCn+1kBkV
94 93 a1i φnkXCn+1kBkV
95 85 89 39 94 fvmptd3 φnDn+1=kXCn+1kBk
96 79 95 sseq12d φnDnDn+1kXCnkBkkXCn+1kBk
97 76 96 mpbird φnDnDn+1
98 1 13 2 3 hoimbl φkXAkBkdomvolnX
99 nfv kφ
100 2 ffvelcdmda φkXAk
101 99 1 100 56 vonhoire φvolnXkXAkBk
102 6 a1i φI=kXAkBk
103 nftru k
104 ioossico AkBkAkBk
105 104 a1i kXAkBkAkBk
106 103 105 ixpssixp kXAkBkkXAkBk
107 106 mptru kXAkBkkXAkBk
108 107 a1i φkXAkBkkXAkBk
109 102 108 eqsstrd φIkXAkBk
110 55 a1i φ*
111 2 110 fssd φA:X*
112 3 110 fssd φB:X*
113 1 13 111 112 ioovonmbl φkXAkBkdomvolnX
114 6 113 eqeltrid φIdomvolnX
115 9 98 101 109 114 meassre φvolnXI
116 9 adantr φnvolnXMeas
117 79 27 eqeltrd φnDndomvolnX
118 114 adantr φnIdomvolnX
119 55 100 sselid φkXAk*
120 119 adantlr φnkXAk*
121 60 rpreccld n1n+
122 121 ad2antlr φnkX1n+
123 15 122 ltaddrpd φnkXAk<Ak+1n
124 icossioo Ak*Bk*Ak<Ak+1nBkBkAk+1nBkAkBk
125 120 58 123 73 124 syl22anc φnkXAk+1nBkAkBk
126 29 125 ixpssixp φnkXAk+1nBkkXAkBk
127 68 oveq1d φnkXCnkBk=Ak+1nBk
128 127 ixpeq2dva φnkXCnkBk=kXAk+1nBk
129 79 128 eqtrd φnDn=kXAk+1nBk
130 6 a1i φnI=kXAkBk
131 129 130 sseq12d φnDnIkXAk+1nBkkXAkBk
132 126 131 mpbird φnDnI
133 116 13 117 118 132 meassle φnvolnXDnvolnXI
134 eqid nvolnXDn=nvolnXDn
135 9 10 11 28 97 115 133 134 meaiuninc2 φnvolnXDnvolnXnDn
136 99 1 100 57 iunhoiioo φnkXAk+1nBk=kXAkBk
137 129 iuneq2dv φnDn=nkXAk+1nBk
138 136 137 102 3eqtr4d φnDn=I
139 138 eqcomd φI=nDn
140 139 fveq2d φvolnXI=volnXnDn
141 140 eqcomd φvolnXnDn=volnXI
142 135 141 breqtrd φnvolnXDnvolnXI
143 2fveq3 n=mvolnXDn=volnXDm
144 143 cbvmptv nvolnXDn=mvolnXDm
145 144 a1i φnvolnXDn=mvolnXDm
146 144 eqcomi mvolnXDm=nvolnXDn
147 eqcom n=mm=n
148 147 imbi1i n=mCnk=Cmkm=nCnk=Cmk
149 eqcom Cnk=CmkCmk=Cnk
150 149 imbi2i m=nCnk=Cmkm=nCmk=Cnk
151 148 150 bitri n=mCnk=Cmkm=nCmk=Cnk
152 81 151 mpbi m=nCmk=Cnk
153 152 oveq2d m=nBkCmk=BkCnk
154 153 prodeq2ad m=nkXBkCmk=kXBkCnk
155 154 cbvmptv mkXBkCmk=nkXBkCnk
156 eqid suprankXBkAk<=suprankXBkAk<
157 eqid 1suprankXBkAk<+1=1suprankXBkAk<+1
158 fveq2 j=kBj=Bk
159 fveq2 j=kAj=Ak
160 158 159 oveq12d j=kBjAj=BkAk
161 160 cbvmptv jXBjAj=kXBkAk
162 161 rneqi ranjXBjAj=rankXBkAk
163 162 infeq1i supranjXBjAj<=suprankXBkAk<
164 163 oveq2i 1supranjXBjAj<=1suprankXBkAk<
165 164 fveq2i 1supranjXBjAj<=1suprankXBkAk<
166 165 oveq1i 1supranjXBjAj<+1=1suprankXBkAk<+1
167 166 fveq2i 1supranjXBjAj<+1=1suprankXBkAk<+1
168 1 2 3 4 5 7 8 146 155 156 157 167 vonioolem1 φmvolnXDmkXBkAk
169 145 168 eqbrtrd φnvolnXDnkXBkAk
170 climuni nvolnXDnvolnXInvolnXDnkXBkAkvolnXI=kXBkAk
171 142 169 170 syl2anc φvolnXI=kXBkAk