Metamath Proof Explorer


Theorem wallispi2lem1

Description: An intermediate step between the first version of the Wallis' formula for π and the second version of Wallis' formula. This second version will then be used to prove Stirling's approximation formula for the factorial. (Contributed by Glauco Siliprandi, 30-Jun-2017)

Ref Expression
Assertion wallispi2lem1 Nseq1×k2k2k12k2k+1N=12 N+1seq1×k2k42k2k12N

Proof

Step Hyp Ref Expression
1 fveq2 x=1seq1×k2k2k12k2k+1x=seq1×k2k2k12k2k+11
2 oveq2 x=12x=21
3 2 oveq1d x=12x+1=21+1
4 3 oveq2d x=112x+1=121+1
5 fveq2 x=1seq1×k2k42k2k12x=seq1×k2k42k2k121
6 4 5 oveq12d x=112x+1seq1×k2k42k2k12x=121+1seq1×k2k42k2k121
7 1 6 eqeq12d x=1seq1×k2k2k12k2k+1x=12x+1seq1×k2k42k2k12xseq1×k2k2k12k2k+11=121+1seq1×k2k42k2k121
8 fveq2 x=yseq1×k2k2k12k2k+1x=seq1×k2k2k12k2k+1y
9 oveq2 x=y2x=2y
10 9 oveq1d x=y2x+1=2y+1
11 10 oveq2d x=y12x+1=12y+1
12 fveq2 x=yseq1×k2k42k2k12x=seq1×k2k42k2k12y
13 11 12 oveq12d x=y12x+1seq1×k2k42k2k12x=12y+1seq1×k2k42k2k12y
14 8 13 eqeq12d x=yseq1×k2k2k12k2k+1x=12x+1seq1×k2k42k2k12xseq1×k2k2k12k2k+1y=12y+1seq1×k2k42k2k12y
15 fveq2 x=y+1seq1×k2k2k12k2k+1x=seq1×k2k2k12k2k+1y+1
16 oveq2 x=y+12x=2y+1
17 16 oveq1d x=y+12x+1=2y+1+1
18 17 oveq2d x=y+112x+1=12y+1+1
19 fveq2 x=y+1seq1×k2k42k2k12x=seq1×k2k42k2k12y+1
20 18 19 oveq12d x=y+112x+1seq1×k2k42k2k12x=12y+1+1seq1×k2k42k2k12y+1
21 15 20 eqeq12d x=y+1seq1×k2k2k12k2k+1x=12x+1seq1×k2k42k2k12xseq1×k2k2k12k2k+1y+1=12y+1+1seq1×k2k42k2k12y+1
22 fveq2 x=Nseq1×k2k2k12k2k+1x=seq1×k2k2k12k2k+1N
23 oveq2 x=N2x=2 N
24 23 oveq1d x=N2x+1=2 N+1
25 24 oveq2d x=N12x+1=12 N+1
26 fveq2 x=Nseq1×k2k42k2k12x=seq1×k2k42k2k12N
27 25 26 oveq12d x=N12x+1seq1×k2k42k2k12x=12 N+1seq1×k2k42k2k12N
28 22 27 eqeq12d x=Nseq1×k2k2k12k2k+1x=12x+1seq1×k2k42k2k12xseq1×k2k2k12k2k+1N=12 N+1seq1×k2k42k2k12N
29 1z 1
30 seq1 1seq1×k2k2k12k2k+11=k2k2k12k2k+11
31 29 30 ax-mp seq1×k2k2k12k2k+11=k2k2k12k2k+11
32 1nn 1
33 oveq2 k=12k=21
34 33 oveq1d k=12k1=211
35 33 34 oveq12d k=12k2k1=21211
36 33 oveq1d k=12k+1=21+1
37 33 36 oveq12d k=12k2k+1=2121+1
38 35 37 oveq12d k=12k2k12k2k+1=212112121+1
39 eqid k2k2k12k2k+1=k2k2k12k2k+1
40 ovex 212112121+1V
41 38 39 40 fvmpt 1k2k2k12k2k+11=212112121+1
42 32 41 ax-mp k2k2k12k2k+11=212112121+1
43 2t1e2 21=2
44 43 oveq1i 211=21
45 2m1e1 21=1
46 44 45 eqtri 211=1
47 43 46 oveq12i 21211=21
48 43 oveq1i 21+1=2+1
49 2p1e3 2+1=3
50 48 49 eqtri 21+1=3
51 43 50 oveq12i 2121+1=23
52 47 51 oveq12i 212112121+1=2123
53 2cn 2
54 ax-1cn 1
55 3cn 3
56 ax-1ne0 10
57 3ne0 30
58 53 54 53 55 56 57 divmuldivi 2123=2213
59 2t2e4 22=4
60 55 mullidi 13=3
61 59 60 oveq12i 2213=43
62 52 58 61 3eqtri 212112121+1=43
63 4cn 4
64 divrec2 433043=134
65 63 55 57 64 mp3an 43=134
66 50 eqcomi 3=21+1
67 66 oveq2i 13=121+1
68 seq1 1seq1×k2k42k2k121=k2k42k2k121
69 29 68 ax-mp seq1×k2k42k2k121=k2k42k2k121
70 33 oveq1d k=12k4=214
71 33 34 oveq12d k=12k2k1=21211
72 71 oveq1d k=12k2k12=212112
73 70 72 oveq12d k=12k42k2k12=214212112
74 eqid k2k42k2k12=k2k42k2k12
75 ovex 214212112V
76 73 74 75 fvmpt 1k2k42k2k121=214212112
77 32 76 ax-mp k2k42k2k121=214212112
78 43 oveq1i 214=24
79 43 46 oveq12i 21211=21
80 79 43 eqtri 21211=2
81 80 oveq1i 212112=22
82 78 81 oveq12i 214212112=2422
83 2exp4 24=16
84 sq2 22=4
85 83 84 oveq12i 2422=164
86 4t4e16 44=16
87 86 eqcomi 16=44
88 87 oveq1i 164=444
89 4ne0 40
90 63 63 89 divcan3i 444=4
91 85 88 90 3eqtri 2422=4
92 82 91 eqtri 214212112=4
93 69 77 92 3eqtri seq1×k2k42k2k121=4
94 93 eqcomi 4=seq1×k2k42k2k121
95 67 94 oveq12i 134=121+1seq1×k2k42k2k121
96 62 65 95 3eqtri 212112121+1=121+1seq1×k2k42k2k121
97 31 42 96 3eqtri seq1×k2k2k12k2k+11=121+1seq1×k2k42k2k121
98 elnnuz yy1
99 98 biimpi yy1
100 99 adantr yseq1×k2k2k12k2k+1y=12y+1seq1×k2k42k2k12yy1
101 seqp1 y1seq1×k2k2k12k2k+1y+1=seq1×k2k2k12k2k+1yk2k2k12k2k+1y+1
102 100 101 syl yseq1×k2k2k12k2k+1y=12y+1seq1×k2k42k2k12yseq1×k2k2k12k2k+1y+1=seq1×k2k2k12k2k+1yk2k2k12k2k+1y+1
103 simpr yseq1×k2k2k12k2k+1y=12y+1seq1×k2k42k2k12yseq1×k2k2k12k2k+1y=12y+1seq1×k2k42k2k12y
104 103 oveq1d yseq1×k2k2k12k2k+1y=12y+1seq1×k2k42k2k12yseq1×k2k2k12k2k+1yk2k2k12k2k+1y+1=12y+1seq1×k2k42k2k12yk2k2k12k2k+1y+1
105 eqidd yk2k2k12k2k+1=k2k2k12k2k+1
106 oveq2 k=y+12k=2y+1
107 106 oveq1d k=y+12k1=2y+11
108 106 107 oveq12d k=y+12k2k1=2y+12y+11
109 106 oveq1d k=y+12k+1=2y+1+1
110 106 109 oveq12d k=y+12k2k+1=2y+12y+1+1
111 108 110 oveq12d k=y+12k2k12k2k+1=2y+12y+112y+12y+1+1
112 111 adantl yk=y+12k2k12k2k+1=2y+12y+112y+12y+1+1
113 peano2nn yy+1
114 2rp 2+
115 114 a1i y2+
116 nnre yy
117 nnnn0 yy0
118 117 nn0ge0d y0y
119 116 118 ge0p1rpd yy+1+
120 115 119 rpmulcld y2y+1+
121 2re 2
122 121 a1i y2
123 1red y1
124 116 123 readdcld yy+1
125 122 124 remulcld y2y+1
126 125 123 resubcld y2y+11
127 1lt2 1<2
128 127 a1i y1<2
129 nnrp yy+
130 123 129 ltaddrp2d y1<y+1
131 122 124 128 130 mulgt1d y1<2y+1
132 123 125 posdifd y1<2y+10<2y+11
133 131 132 mpbid y0<2y+11
134 126 133 elrpd y2y+11+
135 120 134 rpdivcld y2y+12y+11+
136 115 rpge0d y02
137 0le1 01
138 137 a1i y01
139 116 123 118 138 addge0d y0y+1
140 122 124 136 139 mulge0d y02y+1
141 125 140 ge0p1rpd y2y+1+1+
142 120 141 rpdivcld y2y+12y+1+1+
143 135 142 rpmulcld y2y+12y+112y+12y+1+1+
144 105 112 113 143 fvmptd yk2k2k12k2k+1y+1=2y+12y+112y+12y+1+1
145 144 oveq2d y12y+1seq1×k2k42k2k12yk2k2k12k2k+1y+1=12y+1seq1×k2k42k2k12y2y+12y+112y+12y+1+1
146 125 recnd y2y+1
147 126 recnd y2y+11
148 141 rpcnd y2y+1+1
149 133 gt0ne0d y2y+110
150 141 rpne0d y2y+1+10
151 146 147 146 148 149 150 divmuldivd y2y+12y+112y+12y+1+1=2y+12y+12y+112y+1+1
152 146 146 mulcld y2y+12y+1
153 152 147 148 149 150 divdiv1d y2y+12y+12y+112y+1+1=2y+12y+12y+112y+1+1
154 146 sqvald y2y+12=2y+12y+1
155 154 eqcomd y2y+12y+1=2y+12
156 155 oveq1d y2y+12y+12y+11=2y+122y+11
157 156 oveq1d y2y+12y+12y+112y+1+1=2y+122y+112y+1+1
158 151 153 157 3eqtr2d y2y+12y+112y+12y+1+1=2y+122y+112y+1+1
159 158 oveq2d y12y+1seq1×k2k42k2k12y2y+12y+112y+12y+1+1=12y+1seq1×k2k42k2k12y2y+122y+112y+1+1
160 146 sqcld y2y+12
161 160 147 149 divcld y2y+122y+11
162 161 148 150 divrec2d y2y+122y+112y+1+1=12y+1+12y+122y+11
163 162 oveq2d y12y+1seq1×k2k42k2k12y2y+122y+112y+1+1=12y+1seq1×k2k42k2k12y12y+1+12y+122y+11
164 2cnd y2
165 nncn yy
166 164 165 mulcld y2y
167 1cnd y1
168 166 167 addcld y2y+1
169 2nn 2
170 169 a1i y2
171 id yy
172 170 171 nnmulcld y2y
173 172 peano2nnd y2y+1
174 173 nnne0d y2y+10
175 168 174 reccld y12y+1
176 eqidd yx1yk2k42k2k12=k2k42k2k12
177 oveq2 k=x2k=2x
178 177 oveq1d k=x2k4=2x4
179 177 oveq1d k=x2k1=2x1
180 177 179 oveq12d k=x2k2k1=2x2x1
181 180 oveq1d k=x2k2k12=2x2x12
182 178 181 oveq12d k=x2k42k2k12=2x42x2x12
183 182 adantl yx1yk=x2k42k2k12=2x42x2x12
184 elfznn x1yx
185 184 adantl yx1yx
186 169 a1i x2
187 id xx
188 186 187 nnmulcld x2x
189 4nn0 40
190 189 a1i x40
191 188 190 nnexpcld x2x4
192 191 nncnd x2x4
193 2cnd x2
194 nncn xx
195 193 194 mulcld x2x
196 1cnd x1
197 195 196 subcld x2x1
198 195 197 mulcld x2x2x1
199 198 sqcld x2x2x12
200 186 nnne0d x20
201 nnne0 xx0
202 193 194 200 201 mulne0d x2x0
203 1red x1
204 121 a1i x2
205 204 203 remulcld x21
206 nnre xx
207 204 206 remulcld x2x
208 43 a1i x21=2
209 127 208 breqtrrid x1<21
210 0le2 02
211 210 a1i x02
212 nnge1 x1x
213 203 206 204 211 212 lemul2ad x212x
214 203 205 207 209 213 ltletrd x1<2x
215 203 214 gtned x2x1
216 195 196 215 subne0d x2x10
217 195 197 202 216 mulne0d x2x2x10
218 2z 2
219 218 a1i x2
220 198 217 219 expne0d x2x2x120
221 192 199 220 divcld x2x42x2x12
222 184 221 syl x1y2x42x2x12
223 222 adantl yx1y2x42x2x12
224 176 183 185 223 fvmptd yx1yk2k42k2k12x=2x42x2x12
225 224 223 eqeltrd yx1yk2k42k2k12x
226 mulcl xwxw
227 226 adantl yxwxw
228 99 225 227 seqcl yseq1×k2k42k2k12y
229 175 228 mulcld y12y+1seq1×k2k42k2k12y
230 148 150 reccld y12y+1+1
231 229 230 161 mul12d y12y+1seq1×k2k42k2k12y12y+1+12y+122y+11=12y+1+112y+1seq1×k2k42k2k12y2y+122y+11
232 175 228 mulcomd y12y+1seq1×k2k42k2k12y=seq1×k2k42k2k12y12y+1
233 232 oveq1d y12y+1seq1×k2k42k2k12y2y+122y+11=seq1×k2k42k2k12y12y+12y+122y+11
234 228 175 161 mulassd yseq1×k2k42k2k12y12y+12y+122y+11=seq1×k2k42k2k12y12y+12y+122y+11
235 167 168 160 147 174 149 divmuldivd y12y+12y+122y+11=12y+122y+12y+11
236 160 mullidd y12y+12=2y+12
237 164 165 167 adddid y2y+1=2y+21
238 43 a1i y21=2
239 238 oveq2d y2y+21=2y+2
240 237 239 eqtrd y2y+1=2y+2
241 240 oveq1d y2y+11=2y+2-1
242 166 164 167 addsubassd y2y+2-1=2y+2-1
243 45 a1i y21=1
244 243 oveq2d y2y+2-1=2y+1
245 241 242 244 3eqtrd y2y+11=2y+1
246 245 oveq2d y2y+12y+11=2y+12y+1
247 168 sqvald y2y+12=2y+12y+1
248 246 247 eqtr4d y2y+12y+11=2y+12
249 236 248 oveq12d y12y+122y+12y+11=2y+122y+12
250 2p2e4 2+2=4
251 53 53 250 mvlladdi 2=42
252 251 a1i y2=42
253 252 oveq2d y2y+12=2y+142
254 120 rpne0d y2y+10
255 218 a1i y2
256 4z 4
257 256 a1i y4
258 146 254 255 257 expsubd y2y+142=2y+142y+12
259 253 258 eqtrd y2y+12=2y+142y+12
260 245 eqcomd y2y+1=2y+11
261 260 oveq1d y2y+12=2y+112
262 259 261 oveq12d y2y+122y+12=2y+142y+122y+112
263 146 254 257 expclzd y2y+14
264 147 sqcld y2y+112
265 165 167 addcld yy+1
266 170 nnne0d y20
267 113 nnne0d yy+10
268 164 265 266 267 mulne0d y2y+10
269 146 268 255 expne0d y2y+120
270 147 149 255 expne0d y2y+1120
271 263 160 264 269 270 divdiv1d y2y+142y+122y+112=2y+142y+122y+112
272 146 147 sqmuld y2y+12y+112=2y+122y+112
273 272 eqcomd y2y+122y+112=2y+12y+112
274 273 oveq2d y2y+142y+122y+112=2y+142y+12y+112
275 262 271 274 3eqtrd y2y+122y+12=2y+142y+12y+112
276 235 249 275 3eqtrd y12y+12y+122y+11=2y+142y+12y+112
277 276 oveq2d yseq1×k2k42k2k12y12y+12y+122y+11=seq1×k2k42k2k12y2y+142y+12y+112
278 233 234 277 3eqtrd y12y+1seq1×k2k42k2k12y2y+122y+11=seq1×k2k42k2k12y2y+142y+12y+112
279 278 oveq2d y12y+1+112y+1seq1×k2k42k2k12y2y+122y+11=12y+1+1seq1×k2k42k2k12y2y+142y+12y+112
280 163 231 279 3eqtrd y12y+1seq1×k2k42k2k12y2y+122y+112y+1+1=12y+1+1seq1×k2k42k2k12y2y+142y+12y+112
281 145 159 280 3eqtrd y12y+1seq1×k2k42k2k12yk2k2k12k2k+1y+1=12y+1+1seq1×k2k42k2k12y2y+142y+12y+112
282 eqidd yk2k42k2k12=k2k42k2k12
283 simpr yk=y+1k=y+1
284 283 oveq2d yk=y+12k=2y+1
285 284 oveq1d yk=y+12k4=2y+14
286 284 oveq1d yk=y+12k1=2y+11
287 284 286 oveq12d yk=y+12k2k1=2y+12y+11
288 287 oveq1d yk=y+12k2k12=2y+12y+112
289 285 288 oveq12d yk=y+12k42k2k12=2y+142y+12y+112
290 146 147 mulcld y2y+12y+11
291 290 sqcld y2y+12y+112
292 146 147 254 149 mulne0d y2y+12y+110
293 290 292 255 expne0d y2y+12y+1120
294 263 291 293 divcld y2y+142y+12y+112
295 282 289 113 294 fvmptd yk2k42k2k12y+1=2y+142y+12y+112
296 295 eqcomd y2y+142y+12y+112=k2k42k2k12y+1
297 296 oveq2d yseq1×k2k42k2k12y2y+142y+12y+112=seq1×k2k42k2k12yk2k42k2k12y+1
298 297 oveq2d y12y+1+1seq1×k2k42k2k12y2y+142y+12y+112=12y+1+1seq1×k2k42k2k12yk2k42k2k12y+1
299 seqp1 y1seq1×k2k42k2k12y+1=seq1×k2k42k2k12yk2k42k2k12y+1
300 99 299 syl yseq1×k2k42k2k12y+1=seq1×k2k42k2k12yk2k42k2k12y+1
301 300 eqcomd yseq1×k2k42k2k12yk2k42k2k12y+1=seq1×k2k42k2k12y+1
302 301 oveq2d y12y+1+1seq1×k2k42k2k12yk2k42k2k12y+1=12y+1+1seq1×k2k42k2k12y+1
303 281 298 302 3eqtrd y12y+1seq1×k2k42k2k12yk2k2k12k2k+1y+1=12y+1+1seq1×k2k42k2k12y+1
304 303 adantr yseq1×k2k2k12k2k+1y=12y+1seq1×k2k42k2k12y12y+1seq1×k2k42k2k12yk2k2k12k2k+1y+1=12y+1+1seq1×k2k42k2k12y+1
305 102 104 304 3eqtrd yseq1×k2k2k12k2k+1y=12y+1seq1×k2k42k2k12yseq1×k2k2k12k2k+1y+1=12y+1+1seq1×k2k42k2k12y+1
306 305 ex yseq1×k2k2k12k2k+1y=12y+1seq1×k2k42k2k12yseq1×k2k2k12k2k+1y+1=12y+1+1seq1×k2k42k2k12y+1
307 7 14 21 28 97 306 nnind Nseq1×k2k2k12k2k+1N=12 N+1seq1×k2k42k2k12N