Metamath Proof Explorer


Theorem wrd2ind

Description: Perform induction over the structure of two words of the same length. (Contributed by AV, 23-Jan-2019) (Proof shortened by AV, 12-Oct-2022)

Ref Expression
Hypotheses wrd2ind.1 x=w=φψ
wrd2ind.2 x=yw=uφχ
wrd2ind.3 x=y++⟨“z”⟩w=u++⟨“s”⟩φθ
wrd2ind.4 x=Aρτ
wrd2ind.5 w=Bφρ
wrd2ind.6 ψ
wrd2ind.7 yWordXzXuWordYsYy=uχθ
Assertion wrd2ind AWordXBWordYA=Bτ

Proof

Step Hyp Ref Expression
1 wrd2ind.1 x=w=φψ
2 wrd2ind.2 x=yw=uφχ
3 wrd2ind.3 x=y++⟨“z”⟩w=u++⟨“s”⟩φθ
4 wrd2ind.4 x=Aρτ
5 wrd2ind.5 w=Bφρ
6 wrd2ind.6 ψ
7 wrd2ind.7 yWordXzXuWordYsYy=uχθ
8 lencl AWordXA0
9 eqeq2 n=0x=nx=0
10 9 anbi2d n=0x=wx=nx=wx=0
11 10 imbi1d n=0x=wx=nφx=wx=0φ
12 11 2ralbidv n=0wWordYxWordXx=wx=nφwWordYxWordXx=wx=0φ
13 eqeq2 n=mx=nx=m
14 13 anbi2d n=mx=wx=nx=wx=m
15 14 imbi1d n=mx=wx=nφx=wx=mφ
16 15 2ralbidv n=mwWordYxWordXx=wx=nφwWordYxWordXx=wx=mφ
17 eqeq2 n=m+1x=nx=m+1
18 17 anbi2d n=m+1x=wx=nx=wx=m+1
19 18 imbi1d n=m+1x=wx=nφx=wx=m+1φ
20 19 2ralbidv n=m+1wWordYxWordXx=wx=nφwWordYxWordXx=wx=m+1φ
21 eqeq2 n=Ax=nx=A
22 21 anbi2d n=Ax=wx=nx=wx=A
23 22 imbi1d n=Ax=wx=nφx=wx=Aφ
24 23 2ralbidv n=AwWordYxWordXx=wx=nφwWordYxWordXx=wx=Aφ
25 eqeq1 x=0x=w0=w
26 25 adantl wWordYxWordXx=0x=w0=w
27 eqcom 0=ww=0
28 hasheq0 wWordYw=0w=
29 27 28 bitrid wWordY0=ww=
30 hasheq0 xWordXx=0x=
31 6 1 mpbiri x=w=φ
32 31 ex x=w=φ
33 30 32 syl6bi xWordXx=0w=φ
34 33 com13 w=x=0xWordXφ
35 29 34 syl6bi wWordY0=wx=0xWordXφ
36 35 com24 wWordYxWordXx=00=wφ
37 36 imp31 wWordYxWordXx=00=wφ
38 26 37 sylbid wWordYxWordXx=0x=wφ
39 38 ex wWordYxWordXx=0x=wφ
40 39 impcomd wWordYxWordXx=wx=0φ
41 40 rgen2 wWordYxWordXx=wx=0φ
42 fveq2 x=yx=y
43 fveq2 w=uw=u
44 42 43 eqeqan12d x=yw=ux=wy=u
45 fveqeq2 x=yx=my=m
46 45 adantr x=yw=ux=my=m
47 44 46 anbi12d x=yw=ux=wx=my=uy=m
48 47 2 imbi12d x=yw=ux=wx=mφy=uy=mχ
49 48 ancoms w=ux=yx=wx=mφy=uy=mχ
50 49 cbvraldva w=uxWordXx=wx=mφyWordXy=uy=mχ
51 50 cbvralvw wWordYxWordXx=wx=mφuWordYyWordXy=uy=mχ
52 pfxcl wWordYwprefixw1WordY
53 52 adantr wWordYxWordXwprefixw1WordY
54 53 ad2antrl m0wWordYxWordXx=wx=m+1wprefixw1WordY
55 simprll m0wWordYxWordXx=wx=m+1wWordY
56 eqeq1 x=m+1x=wm+1=w
57 nn0p1nn m0m+1
58 eleq1 w=m+1wm+1
59 58 eqcoms m+1=wwm+1
60 57 59 imbitrrid m+1=wm0w
61 56 60 syl6bi x=m+1x=wm0w
62 61 impcom x=wx=m+1m0w
63 62 adantl wWordYxWordXx=wx=m+1m0w
64 63 impcom m0wWordYxWordXx=wx=m+1w
65 64 nnge1d m0wWordYxWordXx=wx=m+11w
66 wrdlenge1n0 wWordYw1w
67 55 66 syl m0wWordYxWordXx=wx=m+1w1w
68 65 67 mpbird m0wWordYxWordXx=wx=m+1w
69 lswcl wWordYwlastSwY
70 55 68 69 syl2anc m0wWordYxWordXx=wx=m+1lastSwY
71 54 70 jca m0wWordYxWordXx=wx=m+1wprefixw1WordYlastSwY
72 pfxcl xWordXxprefixx1WordX
73 72 adantl wWordYxWordXxprefixx1WordX
74 73 ad2antrl m0wWordYxWordXx=wx=m+1xprefixx1WordX
75 simprlr m0wWordYxWordXx=wx=m+1xWordX
76 eleq1 x=m+1xm+1
77 57 76 imbitrrid x=m+1m0x
78 77 ad2antll wWordYxWordXx=wx=m+1m0x
79 78 impcom m0wWordYxWordXx=wx=m+1x
80 79 nnge1d m0wWordYxWordXx=wx=m+11x
81 wrdlenge1n0 xWordXx1x
82 75 81 syl m0wWordYxWordXx=wx=m+1x1x
83 80 82 mpbird m0wWordYxWordXx=wx=m+1x
84 lswcl xWordXxlastSxX
85 75 83 84 syl2anc m0wWordYxWordXx=wx=m+1lastSxX
86 71 74 85 jca32 m0wWordYxWordXx=wx=m+1wprefixw1WordYlastSwYxprefixx1WordXlastSxX
87 86 adantlr m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1wprefixw1WordYlastSwYxprefixx1WordXlastSxX
88 simprl m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1wWordYxWordX
89 simplr m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1uWordYyWordXy=uy=mχ
90 simprrl m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1x=w
91 90 oveq1d m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1x1=w1
92 simprlr m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1xWordX
93 fzossfz 0..^x0x
94 simprrr m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1x=m+1
95 57 ad2antrr m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1m+1
96 94 95 eqeltrd m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1x
97 fzo0end xx10..^x
98 96 97 syl m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1x10..^x
99 93 98 sselid m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1x10x
100 pfxlen xWordXx10xxprefixx1=x1
101 92 99 100 syl2anc m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1xprefixx1=x1
102 simprll m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1wWordY
103 oveq1 w=xw1=x1
104 oveq2 w=x0w=0x
105 103 104 eleq12d w=xw10wx10x
106 105 eqcoms x=ww10wx10x
107 106 adantr x=wx=m+1w10wx10x
108 107 ad2antll m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1w10wx10x
109 99 108 mpbird m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1w10w
110 pfxlen wWordYw10wwprefixw1=w1
111 102 109 110 syl2anc m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1wprefixw1=w1
112 91 101 111 3eqtr4d m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1xprefixx1=wprefixw1
113 94 oveq1d m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1x1=m+1-1
114 nn0cn m0m
115 114 ad2antrr m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1m
116 ax-1cn 1
117 pncan m1m+1-1=m
118 115 116 117 sylancl m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1m+1-1=m
119 101 113 118 3eqtrd m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1xprefixx1=m
120 112 119 jca m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1xprefixx1=wprefixw1xprefixx1=m
121 73 adantr wWordYxWordXu=wprefixw1xprefixx1WordX
122 fveq2 y=xprefixx1y=xprefixx1
123 fveq2 u=wprefixw1u=wprefixw1
124 122 123 eqeqan12d y=xprefixx1u=wprefixw1y=uxprefixx1=wprefixw1
125 124 expcom u=wprefixw1y=xprefixx1y=uxprefixx1=wprefixw1
126 125 adantl wWordYxWordXu=wprefixw1y=xprefixx1y=uxprefixx1=wprefixw1
127 126 imp wWordYxWordXu=wprefixw1y=xprefixx1y=uxprefixx1=wprefixw1
128 fveqeq2 y=xprefixx1y=mxprefixx1=m
129 128 adantl wWordYxWordXu=wprefixw1y=xprefixx1y=mxprefixx1=m
130 127 129 anbi12d wWordYxWordXu=wprefixw1y=xprefixx1y=uy=mxprefixx1=wprefixw1xprefixx1=m
131 vex yV
132 vex uV
133 131 132 2 sbc2ie [˙y/x]˙[˙u/w]˙φχ
134 133 bicomi χ[˙y/x]˙[˙u/w]˙φ
135 134 a1i wWordYxWordXu=wprefixw1y=xprefixx1χ[˙y/x]˙[˙u/w]˙φ
136 simpr wWordYxWordXu=wprefixw1y=xprefixx1y=xprefixx1
137 136 sbceq1d wWordYxWordXu=wprefixw1y=xprefixx1[˙y/x]˙[˙u/w]˙φ[˙xprefixx1/x]˙[˙u/w]˙φ
138 dfsbcq u=wprefixw1[˙u/w]˙φ[˙wprefixw1/w]˙φ
139 138 sbcbidv u=wprefixw1[˙xprefixx1/x]˙[˙u/w]˙φ[˙xprefixx1/x]˙[˙wprefixw1/w]˙φ
140 139 adantl wWordYxWordXu=wprefixw1[˙xprefixx1/x]˙[˙u/w]˙φ[˙xprefixx1/x]˙[˙wprefixw1/w]˙φ
141 140 adantr wWordYxWordXu=wprefixw1y=xprefixx1[˙xprefixx1/x]˙[˙u/w]˙φ[˙xprefixx1/x]˙[˙wprefixw1/w]˙φ
142 135 137 141 3bitrd wWordYxWordXu=wprefixw1y=xprefixx1χ[˙xprefixx1/x]˙[˙wprefixw1/w]˙φ
143 130 142 imbi12d wWordYxWordXu=wprefixw1y=xprefixx1y=uy=mχxprefixx1=wprefixw1xprefixx1=m[˙xprefixx1/x]˙[˙wprefixw1/w]˙φ
144 121 143 rspcdv wWordYxWordXu=wprefixw1yWordXy=uy=mχxprefixx1=wprefixw1xprefixx1=m[˙xprefixx1/x]˙[˙wprefixw1/w]˙φ
145 53 144 rspcimdv wWordYxWordXuWordYyWordXy=uy=mχxprefixx1=wprefixw1xprefixx1=m[˙xprefixx1/x]˙[˙wprefixw1/w]˙φ
146 88 89 120 145 syl3c m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1[˙xprefixx1/x]˙[˙wprefixw1/w]˙φ
147 146 112 jca m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1[˙xprefixx1/x]˙[˙wprefixw1/w]˙φxprefixx1=wprefixw1
148 dfsbcq u=wprefixw1[˙u/w]˙[˙y/x]˙φ[˙wprefixw1/w]˙[˙y/x]˙φ
149 sbccom [˙wprefixw1/w]˙[˙y/x]˙φ[˙y/x]˙[˙wprefixw1/w]˙φ
150 148 149 bitrdi u=wprefixw1[˙u/w]˙[˙y/x]˙φ[˙y/x]˙[˙wprefixw1/w]˙φ
151 123 eqeq2d u=wprefixw1y=uy=wprefixw1
152 150 151 anbi12d u=wprefixw1[˙u/w]˙[˙y/x]˙φy=u[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1
153 oveq1 u=wprefixw1u++⟨“s”⟩=wprefixw1++⟨“s”⟩
154 153 sbceq1d u=wprefixw1[˙u++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ[˙wprefixw1++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ
155 152 154 imbi12d u=wprefixw1[˙u/w]˙[˙y/x]˙φy=u[˙u++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1[˙wprefixw1++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ
156 s1eq s=lastSw⟨“s”⟩=⟨“lastSw”⟩
157 156 oveq2d s=lastSwwprefixw1++⟨“s”⟩=wprefixw1++⟨“lastSw”⟩
158 157 sbceq1d s=lastSw[˙wprefixw1++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ[˙wprefixw1++⟨“lastSw”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ
159 158 imbi2d s=lastSw[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1[˙wprefixw1++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1[˙wprefixw1++⟨“lastSw”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ
160 sbccom [˙wprefixw1++⟨“lastSw”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ[˙y++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
161 160 a1i s=lastSw[˙wprefixw1++⟨“lastSw”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ[˙y++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
162 161 imbi2d s=lastSw[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1[˙wprefixw1++⟨“lastSw”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1[˙y++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
163 159 162 bitrd s=lastSw[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1[˙wprefixw1++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1[˙y++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
164 dfsbcq y=xprefixx1[˙y/x]˙[˙wprefixw1/w]˙φ[˙xprefixx1/x]˙[˙wprefixw1/w]˙φ
165 fveqeq2 y=xprefixx1y=wprefixw1xprefixx1=wprefixw1
166 164 165 anbi12d y=xprefixx1[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1[˙xprefixx1/x]˙[˙wprefixw1/w]˙φxprefixx1=wprefixw1
167 oveq1 y=xprefixx1y++⟨“z”⟩=xprefixx1++⟨“z”⟩
168 167 sbceq1d y=xprefixx1[˙y++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ[˙xprefixx1++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
169 166 168 imbi12d y=xprefixx1[˙y/x]˙[˙wprefixw1/w]˙φy=wprefixw1[˙y++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ[˙xprefixx1/x]˙[˙wprefixw1/w]˙φxprefixx1=wprefixw1[˙xprefixx1++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
170 s1eq z=lastSx⟨“z”⟩=⟨“lastSx”⟩
171 170 oveq2d z=lastSxxprefixx1++⟨“z”⟩=xprefixx1++⟨“lastSx”⟩
172 171 sbceq1d z=lastSx[˙xprefixx1++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ[˙xprefixx1++⟨“lastSx”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
173 172 imbi2d z=lastSx[˙xprefixx1/x]˙[˙wprefixw1/w]˙φxprefixx1=wprefixw1[˙xprefixx1++⟨“z”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ[˙xprefixx1/x]˙[˙wprefixw1/w]˙φxprefixx1=wprefixw1[˙xprefixx1++⟨“lastSx”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
174 simplr uWordYsYyWordXzXy=uyWordXzX
175 simpll uWordYsYyWordXzXy=uuWordYsY
176 simpr uWordYsYyWordXzXy=uy=u
177 174 175 176 7 syl3anc uWordYsYyWordXzXy=uχθ
178 2 ancoms w=ux=yφχ
179 132 131 178 sbc2ie [˙u/w]˙[˙y/x]˙φχ
180 ovex u++⟨“s”⟩V
181 ovex y++⟨“z”⟩V
182 3 ancoms w=u++⟨“s”⟩x=y++⟨“z”⟩φθ
183 180 181 182 sbc2ie [˙u++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φθ
184 177 179 183 3imtr4g uWordYsYyWordXzXy=u[˙u/w]˙[˙y/x]˙φ[˙u++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ
185 184 ex uWordYsYyWordXzXy=u[˙u/w]˙[˙y/x]˙φ[˙u++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ
186 185 impcomd uWordYsYyWordXzX[˙u/w]˙[˙y/x]˙φy=u[˙u++⟨“s”⟩/w]˙[˙y++⟨“z”⟩/x]˙φ
187 155 163 169 173 186 vtocl4ga wprefixw1WordYlastSwYxprefixx1WordXlastSxX[˙xprefixx1/x]˙[˙wprefixw1/w]˙φxprefixx1=wprefixw1[˙xprefixx1++⟨“lastSx”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
188 87 147 187 sylc m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1[˙xprefixx1++⟨“lastSx”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
189 eqtr2 x=wx=m+1w=m+1
190 189 ad2antll m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1w=m+1
191 190 95 eqeltrd m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1w
192 wrdfin wWordYwFin
193 192 adantr wWordYxWordXwFin
194 193 ad2antrl m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1wFin
195 hashnncl wFinww
196 194 195 syl m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1ww
197 191 196 mpbid m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1w
198 pfxlswccat wWordYwwprefixw1++⟨“lastSw”⟩=w
199 198 eqcomd wWordYww=wprefixw1++⟨“lastSw”⟩
200 102 197 199 syl2anc m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1w=wprefixw1++⟨“lastSw”⟩
201 wrdfin xWordXxFin
202 201 adantl wWordYxWordXxFin
203 202 ad2antrl m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1xFin
204 hashnncl xFinxx
205 203 204 syl m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1xx
206 96 205 mpbid m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1x
207 pfxlswccat xWordXxxprefixx1++⟨“lastSx”⟩=x
208 207 eqcomd xWordXxx=xprefixx1++⟨“lastSx”⟩
209 92 206 208 syl2anc m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1x=xprefixx1++⟨“lastSx”⟩
210 sbceq1a w=wprefixw1++⟨“lastSw”⟩φ[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
211 sbceq1a x=xprefixx1++⟨“lastSx”⟩[˙wprefixw1++⟨“lastSw”⟩/w]˙φ[˙xprefixx1++⟨“lastSx”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
212 210 211 sylan9bb w=wprefixw1++⟨“lastSw”⟩x=xprefixx1++⟨“lastSx”⟩φ[˙xprefixx1++⟨“lastSx”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
213 200 209 212 syl2anc m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1φ[˙xprefixx1++⟨“lastSx”⟩/x]˙[˙wprefixw1++⟨“lastSw”⟩/w]˙φ
214 188 213 mpbird m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1φ
215 214 expr m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1φ
216 215 ralrimivva m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1φ
217 216 ex m0uWordYyWordXy=uy=mχwWordYxWordXx=wx=m+1φ
218 51 217 biimtrid m0wWordYxWordXx=wx=mφwWordYxWordXx=wx=m+1φ
219 12 16 20 24 41 218 nn0ind A0wWordYxWordXx=wx=Aφ
220 8 219 syl AWordXwWordYxWordXx=wx=Aφ
221 220 3ad2ant1 AWordXBWordYA=BwWordYxWordXx=wx=Aφ
222 fveq2 w=Bw=B
223 222 eqeq2d w=Bx=wx=B
224 223 anbi1d w=Bx=wx=Ax=Bx=A
225 224 5 imbi12d w=Bx=wx=Aφx=Bx=Aρ
226 225 ralbidv w=BxWordXx=wx=AφxWordXx=Bx=Aρ
227 226 rspcv BWordYwWordYxWordXx=wx=AφxWordXx=Bx=Aρ
228 227 3ad2ant2 AWordXBWordYA=BwWordYxWordXx=wx=AφxWordXx=Bx=Aρ
229 221 228 mpd AWordXBWordYA=BxWordXx=Bx=Aρ
230 eqidd AWordXBWordYA=BA=A
231 fveqeq2 x=Ax=BA=B
232 fveqeq2 x=Ax=AA=A
233 231 232 anbi12d x=Ax=Bx=AA=BA=A
234 233 4 imbi12d x=Ax=Bx=AρA=BA=Aτ
235 234 rspcv AWordXxWordXx=Bx=AρA=BA=Aτ
236 235 com23 AWordXA=BA=AxWordXx=Bx=Aρτ
237 236 expd AWordXA=BA=AxWordXx=Bx=Aρτ
238 237 com34 AWordXA=BxWordXx=Bx=AρA=Aτ
239 238 imp AWordXA=BxWordXx=Bx=AρA=Aτ
240 239 3adant2 AWordXBWordYA=BxWordXx=Bx=AρA=Aτ
241 229 230 240 mp2d AWordXBWordYA=Bτ