Metamath Proof Explorer


Theorem xlimliminflimsup

Description: A sequence of extended reals converges if and only if its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimliminflimsup.m φ M
xlimliminflimsup.z Z = M
xlimliminflimsup.f φ F : Z *
Assertion xlimliminflimsup φ F dom * lim inf F = lim sup F

Proof

Step Hyp Ref Expression
1 xlimliminflimsup.m φ M
2 xlimliminflimsup.z Z = M
3 xlimliminflimsup.f φ F : Z *
4 1 ad2antrr φ F dom * * F M
5 3 ad2antrr φ F dom * * F F : Z *
6 simpr φ F dom * * F * F
7 xlimdm F dom * F * * F
8 7 biimpi F dom * F * * F
9 8 ad2antlr φ F dom * * F F * * F
10 4 2 5 6 9 xlimxrre φ F dom * * F j Z F j : j
11 2 eluzelz2 j Z j
12 11 ad2antlr φ F dom * * F j Z F j : j j
13 eqid j = j
14 simpr φ F dom * * F j Z F j : j F j : j
15 14 frexr φ F dom * * F j Z F j : j F j : j *
16 9 adantr φ F dom * * F j Z F * * F
17 2 3 fuzxrpmcn φ F * 𝑝𝑚
18 17 ad3antrrr φ F dom * * F j Z F * 𝑝𝑚
19 11 adantl φ F dom * * F j Z j
20 18 19 xlimres φ F dom * * F j Z F * * F F j * * F
21 16 20 mpbid φ F dom * * F j Z F j * * F
22 21 adantr φ F dom * * F j Z F j : j F j * * F
23 simpllr φ F dom * * F j Z F j : j * F
24 12 13 15 22 23 xlimclimdm φ F dom * * F j Z F j : j F j dom
25 12 13 14 24 climliminflimsupd φ F dom * * F j Z F j : j lim inf F j = lim sup F j
26 11 adantl φ j Z j
27 17 elexd φ F V
28 27 adantr φ j Z F V
29 3 fdmd φ dom F = Z
30 26 ssd φ Z
31 29 30 eqsstrd φ dom F
32 31 adantr φ j Z dom F
33 26 13 28 32 liminfresuz2 φ j Z lim inf F j = lim inf F
34 33 eqcomd φ j Z lim inf F = lim inf F j
35 34 ad5ant14 φ F dom * * F j Z F j : j lim inf F = lim inf F j
36 26 13 28 32 limsupresuz2 φ j Z lim sup F j = lim sup F
37 36 eqcomd φ j Z lim sup F = lim sup F j
38 37 ad5ant14 φ F dom * * F j Z F j : j lim sup F = lim sup F j
39 25 35 38 3eqtr4d φ F dom * * F j Z F j : j lim inf F = lim sup F
40 10 39 rexlimddv2 φ F dom * * F lim inf F = lim sup F
41 simpll φ F dom * * F = +∞ φ
42 8 adantr F dom * * F = +∞ F * * F
43 simpr F dom * * F = +∞ * F = +∞
44 42 43 breqtrd F dom * * F = +∞ F * +∞
45 44 adantll φ F dom * * F = +∞ F * +∞
46 17 liminfcld φ lim inf F *
47 46 adantr φ F * +∞ lim inf F *
48 17 limsupcld φ lim sup F *
49 48 adantr φ F * +∞ lim sup F *
50 1 2 3 liminflelimsupuz φ lim inf F lim sup F
51 50 adantr φ F * +∞ lim inf F lim sup F
52 49 pnfged φ F * +∞ lim sup F +∞
53 1 adantr φ F * +∞ M
54 3 adantr φ F * +∞ F : Z *
55 simpr φ F * +∞ F * +∞
56 53 2 54 55 xlimpnfliminf φ F * +∞ lim inf F = +∞
57 52 56 breqtrrd φ F * +∞ lim sup F lim inf F
58 47 49 51 57 xrletrid φ F * +∞ lim inf F = lim sup F
59 41 45 58 syl2anc φ F dom * * F = +∞ lim inf F = lim sup F
60 59 adantlr φ F dom * ¬ * F * F = +∞ lim inf F = lim sup F
61 simplll φ F dom * ¬ * F ¬ * F = +∞ φ
62 8 ad2antrr F dom * ¬ * F ¬ * F = +∞ F * * F
63 xlimcl F * * F * F *
64 8 63 syl F dom * * F *
65 64 ad2antrr F dom * ¬ * F ¬ * F = +∞ * F *
66 simplr F dom * ¬ * F ¬ * F = +∞ ¬ * F
67 neqne ¬ * F = +∞ * F +∞
68 67 adantl F dom * ¬ * F ¬ * F = +∞ * F +∞
69 65 66 68 xrnpnfmnf F dom * ¬ * F ¬ * F = +∞ * F = −∞
70 62 69 breqtrd F dom * ¬ * F ¬ * F = +∞ F * −∞
71 70 adantlll φ F dom * ¬ * F ¬ * F = +∞ F * −∞
72 46 adantr φ F * −∞ lim inf F *
73 48 adantr φ F * −∞ lim sup F *
74 50 adantr φ F * −∞ lim inf F lim sup F
75 1 adantr φ F * −∞ M
76 3 adantr φ F * −∞ F : Z *
77 simpr φ F * −∞ F * −∞
78 75 2 76 77 xlimmnflimsup φ F * −∞ lim sup F = −∞
79 72 mnfled φ F * −∞ −∞ lim inf F
80 78 79 eqbrtrd φ F * −∞ lim sup F lim inf F
81 72 73 74 80 xrletrid φ F * −∞ lim inf F = lim sup F
82 61 71 81 syl2anc φ F dom * ¬ * F ¬ * F = +∞ lim inf F = lim sup F
83 60 82 pm2.61dan φ F dom * ¬ * F lim inf F = lim sup F
84 40 83 pm2.61dan φ F dom * lim inf F = lim sup F
85 27 adantr φ lim sup F = −∞ F V
86 mnfxr −∞ *
87 86 a1i φ lim sup F = −∞ −∞ *
88 simpr φ lim sup F = −∞ lim sup F = −∞
89 1 adantr φ lim sup F = −∞ M
90 3 adantr φ lim sup F = −∞ F : Z *
91 89 2 90 xlimmnflimsup2 φ lim sup F = −∞ F * −∞ lim sup F = −∞
92 88 91 mpbird φ lim sup F = −∞ F * −∞
93 85 87 92 breldmd φ lim sup F = −∞ F dom *
94 93 adantlr φ lim inf F = lim sup F lim sup F = −∞ F dom *
95 1 ad2antrr φ lim inf F = lim sup F lim sup F M
96 3 ad2antrr φ lim inf F = lim sup F lim sup F F : Z *
97 simpr φ lim inf F = lim sup F lim sup F lim sup F
98 97 renepnfd φ lim inf F = lim sup F lim sup F lim sup F +∞
99 simplr φ lim inf F = lim sup F lim sup F lim inf F = lim sup F
100 99 97 eqeltrd φ lim inf F = lim sup F lim sup F lim inf F
101 100 renemnfd φ lim inf F = lim sup F lim sup F lim inf F −∞
102 95 2 96 98 101 liminflimsupxrre φ lim inf F = lim sup F lim sup F m Z F m : m
103 2 eluzelz2 m Z m
104 103 ad2antlr φ lim inf F = lim sup F lim sup F m Z F m : m m
105 eqid m = m
106 simpr φ lim inf F = lim sup F lim sup F m Z F m : m F m : m
107 simplll φ lim inf F = lim sup F lim sup F m Z φ
108 simpl lim inf F = lim sup F lim sup F lim inf F = lim sup F
109 simpr lim inf F = lim sup F lim sup F lim sup F
110 108 109 eqeltrd lim inf F = lim sup F lim sup F lim inf F
111 110 ad4ant23 φ lim inf F = lim sup F lim sup F m Z lim inf F
112 simpr φ lim inf F = lim sup F lim sup F m Z m Z
113 103 3ad2ant3 φ lim inf F m Z m
114 27 3ad2ant1 φ lim inf F m Z F V
115 31 3ad2ant1 φ lim inf F m Z dom F
116 113 105 114 115 liminfresuz2 φ lim inf F m Z lim inf F m = lim inf F
117 simp2 φ lim inf F m Z lim inf F
118 116 117 eqeltrd φ lim inf F m Z lim inf F m
119 107 111 112 118 syl3anc φ lim inf F = lim sup F lim sup F m Z lim inf F m
120 119 adantr φ lim inf F = lim sup F lim sup F m Z F m : m lim inf F m
121 simp2 φ lim inf F = lim sup F m Z lim inf F = lim sup F
122 103 adantl φ m Z m
123 27 adantr φ m Z F V
124 31 adantr φ m Z dom F
125 122 105 123 124 liminfresuz2 φ m Z lim inf F m = lim inf F
126 125 3adant2 φ lim inf F = lim sup F m Z lim inf F m = lim inf F
127 122 105 123 124 limsupresuz2 φ m Z lim sup F m = lim sup F
128 127 3adant2 φ lim inf F = lim sup F m Z lim sup F m = lim sup F
129 121 126 128 3eqtr4d φ lim inf F = lim sup F m Z lim inf F m = lim sup F m
130 129 ad5ant124 φ lim inf F = lim sup F lim sup F m Z F m : m lim inf F m = lim sup F m
131 104 105 106 climliminflimsup3 φ lim inf F = lim sup F lim sup F m Z F m : m F m dom lim inf F m lim inf F m = lim sup F m
132 120 130 131 mpbir2and φ lim inf F = lim sup F lim sup F m Z F m : m F m dom
133 104 105 106 132 dmclimxlim φ lim inf F = lim sup F lim sup F m Z F m : m F m dom *
134 17 ad4antr φ lim inf F = lim sup F lim sup F m Z F m : m F * 𝑝𝑚
135 134 104 xlimresdm φ lim inf F = lim sup F lim sup F m Z F m : m F dom * F m dom *
136 133 135 mpbird φ lim inf F = lim sup F lim sup F m Z F m : m F dom *
137 102 136 rexlimddv2 φ lim inf F = lim sup F lim sup F F dom *
138 137 adantlr φ lim inf F = lim sup F lim sup F −∞ lim sup F F dom *
139 simpll φ lim inf F = lim sup F lim sup F −∞ ¬ lim sup F φ lim inf F = lim sup F
140 simpllr φ lim inf F = lim sup F lim sup F −∞ ¬ lim sup F lim inf F = lim sup F
141 48 ad2antrr φ lim sup F −∞ ¬ lim sup F lim sup F *
142 simpr φ lim sup F −∞ ¬ lim sup F ¬ lim sup F
143 simplr φ lim sup F −∞ ¬ lim sup F lim sup F −∞
144 141 142 143 xrnmnfpnf φ lim sup F −∞ ¬ lim sup F lim sup F = +∞
145 144 adantllr φ lim inf F = lim sup F lim sup F −∞ ¬ lim sup F lim sup F = +∞
146 140 145 eqtrd φ lim inf F = lim sup F lim sup F −∞ ¬ lim sup F lim inf F = +∞
147 27 adantr φ lim inf F = +∞ F V
148 pnfxr +∞ *
149 148 a1i φ lim inf F = +∞ +∞ *
150 1 2 3 xlimpnfliminf2 φ F * +∞ lim inf F = +∞
151 150 biimpar φ lim inf F = +∞ F * +∞
152 147 149 151 breldmd φ lim inf F = +∞ F dom *
153 152 adantlr φ lim inf F = lim sup F lim inf F = +∞ F dom *
154 139 146 153 syl2anc φ lim inf F = lim sup F lim sup F −∞ ¬ lim sup F F dom *
155 138 154 pm2.61dan φ lim inf F = lim sup F lim sup F −∞ F dom *
156 94 155 pm2.61dane φ lim inf F = lim sup F F dom *
157 84 156 impbida φ F dom * lim inf F = lim sup F