Metamath Proof Explorer


Theorem xlimliminflimsup

Description: A sequence of extended reals converges if and only if its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses xlimliminflimsup.m φM
xlimliminflimsup.z Z=M
xlimliminflimsup.f φF:Z*
Assertion xlimliminflimsup φFdom*lim infF=lim supF

Proof

Step Hyp Ref Expression
1 xlimliminflimsup.m φM
2 xlimliminflimsup.z Z=M
3 xlimliminflimsup.f φF:Z*
4 1 ad2antrr φFdom**FM
5 3 ad2antrr φFdom**FF:Z*
6 simpr φFdom**F*F
7 xlimdm Fdom*F**F
8 7 biimpi Fdom*F**F
9 8 ad2antlr φFdom**FF**F
10 4 2 5 6 9 xlimxrre φFdom**FjZFj:j
11 2 eluzelz2 jZj
12 11 ad2antlr φFdom**FjZFj:jj
13 eqid j=j
14 simpr φFdom**FjZFj:jFj:j
15 14 frexr φFdom**FjZFj:jFj:j*
16 9 adantr φFdom**FjZF**F
17 2 3 fuzxrpmcn φF*𝑝𝑚
18 17 ad3antrrr φFdom**FjZF*𝑝𝑚
19 11 adantl φFdom**FjZj
20 18 19 xlimres φFdom**FjZF**FFj**F
21 16 20 mpbid φFdom**FjZFj**F
22 21 adantr φFdom**FjZFj:jFj**F
23 simpllr φFdom**FjZFj:j*F
24 12 13 15 22 23 xlimclimdm φFdom**FjZFj:jFjdom
25 12 13 14 24 climliminflimsupd φFdom**FjZFj:jlim infFj=lim supFj
26 11 adantl φjZj
27 17 elexd φFV
28 27 adantr φjZFV
29 3 fdmd φdomF=Z
30 26 ssd φZ
31 29 30 eqsstrd φdomF
32 31 adantr φjZdomF
33 26 13 28 32 liminfresuz2 φjZlim infFj=lim infF
34 33 eqcomd φjZlim infF=lim infFj
35 34 ad5ant14 φFdom**FjZFj:jlim infF=lim infFj
36 26 13 28 32 limsupresuz2 φjZlim supFj=lim supF
37 36 eqcomd φjZlim supF=lim supFj
38 37 ad5ant14 φFdom**FjZFj:jlim supF=lim supFj
39 25 35 38 3eqtr4d φFdom**FjZFj:jlim infF=lim supF
40 10 39 rexlimddv2 φFdom**Flim infF=lim supF
41 simpll φFdom**F=+∞φ
42 8 adantr Fdom**F=+∞F**F
43 simpr Fdom**F=+∞*F=+∞
44 42 43 breqtrd Fdom**F=+∞F*+∞
45 44 adantll φFdom**F=+∞F*+∞
46 17 liminfcld φlim infF*
47 46 adantr φF*+∞lim infF*
48 17 limsupcld φlim supF*
49 48 adantr φF*+∞lim supF*
50 1 2 3 liminflelimsupuz φlim infFlim supF
51 50 adantr φF*+∞lim infFlim supF
52 49 pnfged φF*+∞lim supF+∞
53 1 adantr φF*+∞M
54 3 adantr φF*+∞F:Z*
55 simpr φF*+∞F*+∞
56 53 2 54 55 xlimpnfliminf φF*+∞lim infF=+∞
57 52 56 breqtrrd φF*+∞lim supFlim infF
58 47 49 51 57 xrletrid φF*+∞lim infF=lim supF
59 41 45 58 syl2anc φFdom**F=+∞lim infF=lim supF
60 59 adantlr φFdom*¬*F*F=+∞lim infF=lim supF
61 simplll φFdom*¬*F¬*F=+∞φ
62 8 ad2antrr Fdom*¬*F¬*F=+∞F**F
63 xlimcl F**F*F*
64 8 63 syl Fdom**F*
65 64 ad2antrr Fdom*¬*F¬*F=+∞*F*
66 simplr Fdom*¬*F¬*F=+∞¬*F
67 neqne ¬*F=+∞*F+∞
68 67 adantl Fdom*¬*F¬*F=+∞*F+∞
69 65 66 68 xrnpnfmnf Fdom*¬*F¬*F=+∞*F=−∞
70 62 69 breqtrd Fdom*¬*F¬*F=+∞F*−∞
71 70 adantlll φFdom*¬*F¬*F=+∞F*−∞
72 46 adantr φF*−∞lim infF*
73 48 adantr φF*−∞lim supF*
74 50 adantr φF*−∞lim infFlim supF
75 1 adantr φF*−∞M
76 3 adantr φF*−∞F:Z*
77 simpr φF*−∞F*−∞
78 75 2 76 77 xlimmnflimsup φF*−∞lim supF=−∞
79 72 mnfled φF*−∞−∞lim infF
80 78 79 eqbrtrd φF*−∞lim supFlim infF
81 72 73 74 80 xrletrid φF*−∞lim infF=lim supF
82 61 71 81 syl2anc φFdom*¬*F¬*F=+∞lim infF=lim supF
83 60 82 pm2.61dan φFdom*¬*Flim infF=lim supF
84 40 83 pm2.61dan φFdom*lim infF=lim supF
85 27 adantr φlim supF=−∞FV
86 mnfxr −∞*
87 86 a1i φlim supF=−∞−∞*
88 simpr φlim supF=−∞lim supF=−∞
89 1 adantr φlim supF=−∞M
90 3 adantr φlim supF=−∞F:Z*
91 89 2 90 xlimmnflimsup2 φlim supF=−∞F*−∞lim supF=−∞
92 88 91 mpbird φlim supF=−∞F*−∞
93 85 87 92 breldmd φlim supF=−∞Fdom*
94 93 adantlr φlim infF=lim supFlim supF=−∞Fdom*
95 1 ad2antrr φlim infF=lim supFlim supFM
96 3 ad2antrr φlim infF=lim supFlim supFF:Z*
97 simpr φlim infF=lim supFlim supFlim supF
98 97 renepnfd φlim infF=lim supFlim supFlim supF+∞
99 simplr φlim infF=lim supFlim supFlim infF=lim supF
100 99 97 eqeltrd φlim infF=lim supFlim supFlim infF
101 100 renemnfd φlim infF=lim supFlim supFlim infF−∞
102 95 2 96 98 101 liminflimsupxrre φlim infF=lim supFlim supFmZFm:m
103 2 eluzelz2 mZm
104 103 ad2antlr φlim infF=lim supFlim supFmZFm:mm
105 eqid m=m
106 simpr φlim infF=lim supFlim supFmZFm:mFm:m
107 simplll φlim infF=lim supFlim supFmZφ
108 simpl lim infF=lim supFlim supFlim infF=lim supF
109 simpr lim infF=lim supFlim supFlim supF
110 108 109 eqeltrd lim infF=lim supFlim supFlim infF
111 110 ad4ant23 φlim infF=lim supFlim supFmZlim infF
112 simpr φlim infF=lim supFlim supFmZmZ
113 103 3ad2ant3 φlim infFmZm
114 27 3ad2ant1 φlim infFmZFV
115 31 3ad2ant1 φlim infFmZdomF
116 113 105 114 115 liminfresuz2 φlim infFmZlim infFm=lim infF
117 simp2 φlim infFmZlim infF
118 116 117 eqeltrd φlim infFmZlim infFm
119 107 111 112 118 syl3anc φlim infF=lim supFlim supFmZlim infFm
120 119 adantr φlim infF=lim supFlim supFmZFm:mlim infFm
121 simp2 φlim infF=lim supFmZlim infF=lim supF
122 103 adantl φmZm
123 27 adantr φmZFV
124 31 adantr φmZdomF
125 122 105 123 124 liminfresuz2 φmZlim infFm=lim infF
126 125 3adant2 φlim infF=lim supFmZlim infFm=lim infF
127 122 105 123 124 limsupresuz2 φmZlim supFm=lim supF
128 127 3adant2 φlim infF=lim supFmZlim supFm=lim supF
129 121 126 128 3eqtr4d φlim infF=lim supFmZlim infFm=lim supFm
130 129 ad5ant124 φlim infF=lim supFlim supFmZFm:mlim infFm=lim supFm
131 104 105 106 climliminflimsup3 φlim infF=lim supFlim supFmZFm:mFmdomlim infFmlim infFm=lim supFm
132 120 130 131 mpbir2and φlim infF=lim supFlim supFmZFm:mFmdom
133 104 105 106 132 dmclimxlim φlim infF=lim supFlim supFmZFm:mFmdom*
134 17 ad4antr φlim infF=lim supFlim supFmZFm:mF*𝑝𝑚
135 134 104 xlimresdm φlim infF=lim supFlim supFmZFm:mFdom*Fmdom*
136 133 135 mpbird φlim infF=lim supFlim supFmZFm:mFdom*
137 102 136 rexlimddv2 φlim infF=lim supFlim supFFdom*
138 137 adantlr φlim infF=lim supFlim supF−∞lim supFFdom*
139 simpll φlim infF=lim supFlim supF−∞¬lim supFφlim infF=lim supF
140 simpllr φlim infF=lim supFlim supF−∞¬lim supFlim infF=lim supF
141 48 ad2antrr φlim supF−∞¬lim supFlim supF*
142 simpr φlim supF−∞¬lim supF¬lim supF
143 simplr φlim supF−∞¬lim supFlim supF−∞
144 141 142 143 xrnmnfpnf φlim supF−∞¬lim supFlim supF=+∞
145 144 adantllr φlim infF=lim supFlim supF−∞¬lim supFlim supF=+∞
146 140 145 eqtrd φlim infF=lim supFlim supF−∞¬lim supFlim infF=+∞
147 27 adantr φlim infF=+∞FV
148 pnfxr +∞*
149 148 a1i φlim infF=+∞+∞*
150 1 2 3 xlimpnfliminf2 φF*+∞lim infF=+∞
151 150 biimpar φlim infF=+∞F*+∞
152 147 149 151 breldmd φlim infF=+∞Fdom*
153 152 adantlr φlim infF=lim supFlim infF=+∞Fdom*
154 139 146 153 syl2anc φlim infF=lim supFlim supF−∞¬lim supFFdom*
155 138 154 pm2.61dan φlim infF=lim supFlim supF−∞Fdom*
156 94 155 pm2.61dane φlim infF=lim supFFdom*
157 84 156 impbida φFdom*lim infF=lim supF