Metamath Proof Explorer


Theorem yonedalem4c

Description: Lemma for yoneda . (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses yoneda.y Y=YonC
yoneda.b B=BaseC
yoneda.1 1˙=IdC
yoneda.o O=oppCatC
yoneda.s S=SetCatU
yoneda.t T=SetCatV
yoneda.q Q=OFuncCatS
yoneda.h H=HomFQ
yoneda.r R=Q×cOFuncCatT
yoneda.e E=OevalFS
yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
yoneda.c φCCat
yoneda.w φVW
yoneda.u φranHom𝑓CU
yoneda.v φranHom𝑓QUV
yonedalem21.f φFOFuncS
yonedalem21.x φXB
yonedalem4.n N=fOFuncS,xBu1stfxyBgyHomCxx2ndfygu
yonedalem4.p φA1stFX
Assertion yonedalem4c φFNXA1stYXONatSF

Proof

Step Hyp Ref Expression
1 yoneda.y Y=YonC
2 yoneda.b B=BaseC
3 yoneda.1 1˙=IdC
4 yoneda.o O=oppCatC
5 yoneda.s S=SetCatU
6 yoneda.t T=SetCatV
7 yoneda.q Q=OFuncCatS
8 yoneda.h H=HomFQ
9 yoneda.r R=Q×cOFuncCatT
10 yoneda.e E=OevalFS
11 yoneda.z Z=Hfunc1stYtpos2ndYfuncQ2ndFO⟨,⟩FQ1stFO
12 yoneda.c φCCat
13 yoneda.w φVW
14 yoneda.u φranHom𝑓CU
15 yoneda.v φranHom𝑓QUV
16 yonedalem21.f φFOFuncS
17 yonedalem21.x φXB
18 yonedalem4.n N=fOFuncS,xBu1stfxyBgyHomCxx2ndfygu
19 yonedalem4.p φA1stFX
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 yonedalem4a φFNXA=yBgyHomCXX2ndFygA
21 oveq1 y=zyHomCX=zHomCX
22 oveq2 y=zX2ndFy=X2ndFz
23 22 fveq1d y=zX2ndFyg=X2ndFzg
24 23 fveq1d y=zX2ndFygA=X2ndFzgA
25 21 24 mpteq12dv y=zgyHomCXX2ndFygA=gzHomCXX2ndFzgA
26 25 cbvmptv yBgyHomCXX2ndFygA=zBgzHomCXX2ndFzgA
27 20 26 eqtrdi φFNXA=zBgzHomCXX2ndFzgA
28 4 2 oppcbas B=BaseO
29 eqid HomO=HomO
30 eqid HomS=HomS
31 relfunc RelOFuncS
32 1st2ndbr RelOFuncSFOFuncS1stFOFuncS2ndF
33 31 16 32 sylancr φ1stFOFuncS2ndF
34 33 adantr φzB1stFOFuncS2ndF
35 17 adantr φzBXB
36 simpr φzBzB
37 28 29 30 34 35 36 funcf2 φzBX2ndFz:XHomOz1stFXHomS1stFz
38 37 adantr φzBgzHomCXX2ndFz:XHomOz1stFXHomS1stFz
39 simpr φzBgzHomCXgzHomCX
40 eqid HomC=HomC
41 40 4 oppchom XHomOz=zHomCX
42 39 41 eleqtrrdi φzBgzHomCXgXHomOz
43 38 42 ffvelcdmd φzBgzHomCXX2ndFzg1stFXHomS1stFz
44 15 unssbd φUV
45 13 44 ssexd φUV
46 45 adantr φzBUV
47 46 adantr φzBgzHomCXUV
48 eqid BaseS=BaseS
49 28 48 33 funcf1 φ1stF:BBaseS
50 5 45 setcbas φU=BaseS
51 50 feq3d φ1stF:BU1stF:BBaseS
52 49 51 mpbird φ1stF:BU
53 52 17 ffvelcdmd φ1stFXU
54 53 ad2antrr φzBgzHomCX1stFXU
55 52 ffvelcdmda φzB1stFzU
56 55 adantr φzBgzHomCX1stFzU
57 5 47 30 54 56 elsetchom φzBgzHomCXX2ndFzg1stFXHomS1stFzX2ndFzg:1stFX1stFz
58 43 57 mpbid φzBgzHomCXX2ndFzg:1stFX1stFz
59 19 ad2antrr φzBgzHomCXA1stFX
60 58 59 ffvelcdmd φzBgzHomCXX2ndFzgA1stFz
61 60 fmpttd φzBgzHomCXX2ndFzgA:zHomCX1stFz
62 12 adantr φzBCCat
63 1 2 62 35 40 36 yon11 φzB1st1stYXz=zHomCX
64 63 feq2d φzBgzHomCXX2ndFzgA:1st1stYXz1stFzgzHomCXX2ndFzgA:zHomCX1stFz
65 61 64 mpbird φzBgzHomCXX2ndFzgA:1st1stYXz1stFz
66 1 2 12 17 4 5 45 14 yon1cl φ1stYXOFuncS
67 1st2ndbr RelOFuncS1stYXOFuncS1st1stYXOFuncS2nd1stYX
68 31 66 67 sylancr φ1st1stYXOFuncS2nd1stYX
69 28 48 68 funcf1 φ1st1stYX:BBaseS
70 50 feq3d φ1st1stYX:BU1st1stYX:BBaseS
71 69 70 mpbird φ1st1stYX:BU
72 71 ffvelcdmda φzB1st1stYXzU
73 5 46 30 72 55 elsetchom φzBgzHomCXX2ndFzgA1st1stYXzHomS1stFzgzHomCXX2ndFzgA:1st1stYXz1stFz
74 65 73 mpbird φzBgzHomCXX2ndFzgA1st1stYXzHomS1stFz
75 74 ralrimiva φzBgzHomCXX2ndFzgA1st1stYXzHomS1stFz
76 2 fvexi BV
77 mptelixpg BVzBgzHomCXX2ndFzgAzB1st1stYXzHomS1stFzzBgzHomCXX2ndFzgA1st1stYXzHomS1stFz
78 76 77 ax-mp zBgzHomCXX2ndFzgAzB1st1stYXzHomS1stFzzBgzHomCXX2ndFzgA1st1stYXzHomS1stFz
79 75 78 sylibr φzBgzHomCXX2ndFzgAzB1st1stYXzHomS1stFz
80 27 79 eqeltrd φFNXAzB1st1stYXzHomS1stFz
81 12 adantr φzBwBhzHomOwCCat
82 17 adantr φzBwBhzHomOwXB
83 simpr1 φzBwBhzHomOwzB
84 1 2 81 82 40 83 yon11 φzBwBhzHomOw1st1stYXz=zHomCX
85 84 eleq2d φzBwBhzHomOwk1st1stYXzkzHomCX
86 85 biimpa φzBwBhzHomOwk1st1stYXzkzHomCX
87 eqid compO=compO
88 eqid compS=compS
89 33 adantr φzBwBhzHomOw1stFOFuncS2ndF
90 89 adantr φzBwBhzHomOwkzHomCX1stFOFuncS2ndF
91 82 adantr φzBwBhzHomOwkzHomCXXB
92 83 adantr φzBwBhzHomOwkzHomCXzB
93 simpr2 φzBwBhzHomOwwB
94 93 adantr φzBwBhzHomOwkzHomCXwB
95 simpr φzBwBhzHomOwkzHomCXkzHomCX
96 95 41 eleqtrrdi φzBwBhzHomOwkzHomCXkXHomOz
97 simplr3 φzBwBhzHomOwkzHomCXhzHomOw
98 28 29 87 88 90 91 92 94 96 97 funcco φzBwBhzHomOwkzHomCXX2ndFwhXzcompOwk=z2ndFwh1stFX1stFzcompS1stFwX2ndFzk
99 eqid compC=compC
100 2 99 4 91 92 94 oppcco φzBwBhzHomOwkzHomCXhXzcompOwk=kwzcompCXh
101 100 fveq2d φzBwBhzHomOwkzHomCXX2ndFwhXzcompOwk=X2ndFwkwzcompCXh
102 45 adantr φzBwBhzHomOwUV
103 102 adantr φzBwBhzHomOwkzHomCXUV
104 53 ad2antrr φzBwBhzHomOwkzHomCX1stFXU
105 55 3ad2antr1 φzBwBhzHomOw1stFzU
106 105 adantr φzBwBhzHomOwkzHomCX1stFzU
107 52 adantr φzBwBhzHomOw1stF:BU
108 107 93 ffvelcdmd φzBwBhzHomOw1stFwU
109 108 adantr φzBwBhzHomOwkzHomCX1stFwU
110 28 29 30 89 82 83 funcf2 φzBwBhzHomOwX2ndFz:XHomOz1stFXHomS1stFz
111 110 adantr φzBwBhzHomOwkzHomCXX2ndFz:XHomOz1stFXHomS1stFz
112 111 96 ffvelcdmd φzBwBhzHomOwkzHomCXX2ndFzk1stFXHomS1stFz
113 5 103 30 104 106 elsetchom φzBwBhzHomOwkzHomCXX2ndFzk1stFXHomS1stFzX2ndFzk:1stFX1stFz
114 112 113 mpbid φzBwBhzHomOwkzHomCXX2ndFzk:1stFX1stFz
115 28 29 30 89 83 93 funcf2 φzBwBhzHomOwz2ndFw:zHomOw1stFzHomS1stFw
116 simpr3 φzBwBhzHomOwhzHomOw
117 115 116 ffvelcdmd φzBwBhzHomOwz2ndFwh1stFzHomS1stFw
118 5 102 30 105 108 elsetchom φzBwBhzHomOwz2ndFwh1stFzHomS1stFwz2ndFwh:1stFz1stFw
119 117 118 mpbid φzBwBhzHomOwz2ndFwh:1stFz1stFw
120 119 adantr φzBwBhzHomOwkzHomCXz2ndFwh:1stFz1stFw
121 5 103 88 104 106 109 114 120 setcco φzBwBhzHomOwkzHomCXz2ndFwh1stFX1stFzcompS1stFwX2ndFzk=z2ndFwhX2ndFzk
122 98 101 121 3eqtr3d φzBwBhzHomOwkzHomCXX2ndFwkwzcompCXh=z2ndFwhX2ndFzk
123 122 fveq1d φzBwBhzHomOwkzHomCXX2ndFwkwzcompCXhA=z2ndFwhX2ndFzkA
124 19 ad2antrr φzBwBhzHomOwkzHomCXA1stFX
125 fvco3 X2ndFzk:1stFX1stFzA1stFXz2ndFwhX2ndFzkA=z2ndFwhX2ndFzkA
126 114 124 125 syl2anc φzBwBhzHomOwkzHomCXz2ndFwhX2ndFzkA=z2ndFwhX2ndFzkA
127 123 126 eqtrd φzBwBhzHomOwkzHomCXX2ndFwkwzcompCXhA=z2ndFwhX2ndFzkA
128 81 adantr φzBwBhzHomOwkzHomCXCCat
129 40 4 oppchom zHomOw=wHomCz
130 97 129 eleqtrdi φzBwBhzHomOwkzHomCXhwHomCz
131 1 2 128 91 40 92 99 94 130 95 yon12 φzBwBhzHomOwkzHomCXz2nd1stYXwhk=kwzcompCXh
132 131 fveq2d φzBwBhzHomOwkzHomCXFNXAwz2nd1stYXwhk=FNXAwkwzcompCXh
133 13 ad2antrr φzBwBhzHomOwkzHomCXVW
134 14 ad2antrr φzBwBhzHomOwkzHomCXranHom𝑓CU
135 15 ad2antrr φzBwBhzHomOwkzHomCXranHom𝑓QUV
136 16 ad2antrr φzBwBhzHomOwkzHomCXFOFuncS
137 2 40 99 128 94 92 91 130 95 catcocl φzBwBhzHomOwkzHomCXkwzcompCXhwHomCX
138 1 2 3 4 5 6 7 8 9 10 11 128 133 134 135 136 91 18 124 94 137 yonedalem4b φzBwBhzHomOwkzHomCXFNXAwkwzcompCXh=X2ndFwkwzcompCXhA
139 132 138 eqtrd φzBwBhzHomOwkzHomCXFNXAwz2nd1stYXwhk=X2ndFwkwzcompCXhA
140 1 2 3 4 5 6 7 8 9 10 11 128 133 134 135 136 91 18 124 92 95 yonedalem4b φzBwBhzHomOwkzHomCXFNXAzk=X2ndFzkA
141 140 fveq2d φzBwBhzHomOwkzHomCXz2ndFwhFNXAzk=z2ndFwhX2ndFzkA
142 127 139 141 3eqtr4d φzBwBhzHomOwkzHomCXFNXAwz2nd1stYXwhk=z2ndFwhFNXAzk
143 86 142 syldan φzBwBhzHomOwk1st1stYXzFNXAwz2nd1stYXwhk=z2ndFwhFNXAzk
144 143 mpteq2dva φzBwBhzHomOwk1st1stYXzFNXAwz2nd1stYXwhk=k1st1stYXzz2ndFwhFNXAzk
145 fveq2 z=wFNXAz=FNXAw
146 fveq2 z=w1st1stYXz=1st1stYXw
147 fveq2 z=w1stFz=1stFw
148 145 146 147 feq123d z=wFNXAz:1st1stYXz1stFzFNXAw:1st1stYXw1stFw
149 27 fveq1d φFNXAz=zBgzHomCXX2ndFzgAz
150 ovex zHomCXV
151 150 mptex gzHomCXX2ndFzgAV
152 eqid zBgzHomCXX2ndFzgA=zBgzHomCXX2ndFzgA
153 152 fvmpt2 zBgzHomCXX2ndFzgAVzBgzHomCXX2ndFzgAz=gzHomCXX2ndFzgA
154 151 153 mpan2 zBzBgzHomCXX2ndFzgAz=gzHomCXX2ndFzgA
155 149 154 sylan9eq φzBFNXAz=gzHomCXX2ndFzgA
156 155 feq1d φzBFNXAz:1st1stYXz1stFzgzHomCXX2ndFzgA:1st1stYXz1stFz
157 65 156 mpbird φzBFNXAz:1st1stYXz1stFz
158 157 ralrimiva φzBFNXAz:1st1stYXz1stFz
159 158 adantr φzBwBhzHomOwzBFNXAz:1st1stYXz1stFz
160 148 159 93 rspcdva φzBwBhzHomOwFNXAw:1st1stYXw1stFw
161 68 adantr φzBwBhzHomOw1st1stYXOFuncS2nd1stYX
162 28 29 30 161 83 93 funcf2 φzBwBhzHomOwz2nd1stYXw:zHomOw1st1stYXzHomS1st1stYXw
163 162 116 ffvelcdmd φzBwBhzHomOwz2nd1stYXwh1st1stYXzHomS1st1stYXw
164 72 3ad2antr1 φzBwBhzHomOw1st1stYXzU
165 71 adantr φzBwBhzHomOw1st1stYX:BU
166 165 93 ffvelcdmd φzBwBhzHomOw1st1stYXwU
167 5 102 30 164 166 elsetchom φzBwBhzHomOwz2nd1stYXwh1st1stYXzHomS1st1stYXwz2nd1stYXwh:1st1stYXz1st1stYXw
168 163 167 mpbid φzBwBhzHomOwz2nd1stYXwh:1st1stYXz1st1stYXw
169 fcompt FNXAw:1st1stYXw1stFwz2nd1stYXwh:1st1stYXz1st1stYXwFNXAwz2nd1stYXwh=k1st1stYXzFNXAwz2nd1stYXwhk
170 160 168 169 syl2anc φzBwBhzHomOwFNXAwz2nd1stYXwh=k1st1stYXzFNXAwz2nd1stYXwhk
171 157 3ad2antr1 φzBwBhzHomOwFNXAz:1st1stYXz1stFz
172 fcompt z2ndFwh:1stFz1stFwFNXAz:1st1stYXz1stFzz2ndFwhFNXAz=k1st1stYXzz2ndFwhFNXAzk
173 119 171 172 syl2anc φzBwBhzHomOwz2ndFwhFNXAz=k1st1stYXzz2ndFwhFNXAzk
174 144 170 173 3eqtr4d φzBwBhzHomOwFNXAwz2nd1stYXwh=z2ndFwhFNXAz
175 5 102 88 164 166 108 168 160 setcco φzBwBhzHomOwFNXAw1st1stYXz1st1stYXwcompS1stFwz2nd1stYXwh=FNXAwz2nd1stYXwh
176 5 102 88 164 105 108 171 119 setcco φzBwBhzHomOwz2ndFwh1st1stYXz1stFzcompS1stFwFNXAz=z2ndFwhFNXAz
177 174 175 176 3eqtr4d φzBwBhzHomOwFNXAw1st1stYXz1st1stYXwcompS1stFwz2nd1stYXwh=z2ndFwh1st1stYXz1stFzcompS1stFwFNXAz
178 177 ralrimivvva φzBwBhzHomOwFNXAw1st1stYXz1st1stYXwcompS1stFwz2nd1stYXwh=z2ndFwh1st1stYXz1stFzcompS1stFwFNXAz
179 eqid ONatS=ONatS
180 179 28 29 30 88 66 16 isnat2 φFNXA1stYXONatSFFNXAzB1st1stYXzHomS1stFzzBwBhzHomOwFNXAw1st1stYXz1st1stYXwcompS1stFwz2nd1stYXwh=z2ndFwh1st1stYXz1stFzcompS1stFwFNXAz
181 80 178 180 mpbir2and φFNXA1stYXONatSF