| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vieta.w |
⊢ 𝑊 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
vieta.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
vieta.3 |
⊢ − = ( -g ‘ 𝑊 ) |
| 4 |
|
vieta.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑊 ) |
| 5 |
|
vieta.q |
⊢ 𝑄 = ( 𝐼 eval 𝑅 ) |
| 6 |
|
vieta.e |
⊢ 𝐸 = ( 𝐼 eSymPoly 𝑅 ) |
| 7 |
|
vieta.n |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 8 |
|
vieta.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 9 |
|
vieta.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 10 |
|
vieta.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 11 |
|
vieta.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 12 |
|
vieta.p |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 13 |
|
vieta.h |
⊢ 𝐻 = ( ♯ ‘ 𝐼 ) |
| 14 |
|
vieta.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 15 |
|
vieta.r |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 16 |
|
vieta.z |
⊢ ( 𝜑 → 𝑍 : 𝐼 ⟶ 𝐵 ) |
| 17 |
|
vieta.f |
⊢ 𝐹 = ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ) |
| 18 |
|
vieta.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 0 ... 𝐻 ) ) |
| 19 |
|
vieta.c |
⊢ 𝐶 = ( coe1 ‘ 𝐹 ) |
| 20 |
|
fveq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 ‘ 𝑛 ) = ( 𝑍 ‘ 𝑛 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) = ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) = ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) |
| 23 |
22
|
mpteq2dv |
⊢ ( 𝑧 = 𝑍 → ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑍 ‘ 𝑛 ) ) ) ) ) ) |
| 25 |
24 17
|
eqtr4di |
⊢ ( 𝑧 = 𝑍 → ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) = 𝐹 ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝑧 = 𝑍 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) = ( coe1 ‘ 𝐹 ) ) |
| 27 |
26 19
|
eqtr4di |
⊢ ( 𝑧 = 𝑍 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) = 𝐶 ) |
| 28 |
27
|
fveq1d |
⊢ ( 𝑧 = 𝑍 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( 𝐻 − 𝑘 ) ) = ( 𝐶 ‘ ( 𝐻 − 𝑘 ) ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑍 ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑍 ) ) ) |
| 31 |
28 30
|
eqeq12d |
⊢ ( 𝑧 = 𝑍 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( 𝐻 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( 𝐶 ‘ ( 𝐻 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑍 ) ) ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝐻 − 𝑘 ) = ( 𝐻 − 𝐾 ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝐶 ‘ ( 𝐻 − 𝑘 ) ) = ( 𝐶 ‘ ( 𝐻 − 𝐾 ) ) ) |
| 34 |
|
oveq1 |
⊢ ( 𝑘 = 𝐾 → ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) = ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) ) |
| 35 |
|
2fveq3 |
⊢ ( 𝑘 = 𝐾 → ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) = ( 𝑄 ‘ ( 𝐸 ‘ 𝐾 ) ) ) |
| 36 |
35
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑍 ) = ( ( 𝑄 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ 𝑍 ) ) |
| 37 |
34 36
|
oveq12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑍 ) ) = ( ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ 𝑍 ) ) ) |
| 38 |
33 37
|
eqeq12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝐶 ‘ ( 𝐻 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑍 ) ) ↔ ( 𝐶 ‘ ( 𝐻 − 𝐾 ) ) = ( ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ 𝑍 ) ) ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑗 = ∅ → ( 𝐵 ↑m 𝑗 ) = ( 𝐵 ↑m ∅ ) ) |
| 40 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 41 |
|
mapdm0 |
⊢ ( 𝐵 ∈ V → ( 𝐵 ↑m ∅ ) = { ∅ } ) |
| 42 |
40 41
|
ax-mp |
⊢ ( 𝐵 ↑m ∅ ) = { ∅ } |
| 43 |
39 42
|
eqtrdi |
⊢ ( 𝑗 = ∅ → ( 𝐵 ↑m 𝑗 ) = { ∅ } ) |
| 44 |
|
fveq2 |
⊢ ( 𝑗 = ∅ → ( ♯ ‘ 𝑗 ) = ( ♯ ‘ ∅ ) ) |
| 45 |
44
|
oveq2d |
⊢ ( 𝑗 = ∅ → ( 0 ... ( ♯ ‘ 𝑗 ) ) = ( 0 ... ( ♯ ‘ ∅ ) ) ) |
| 46 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 47 |
46
|
oveq2i |
⊢ ( 0 ... ( ♯ ‘ ∅ ) ) = ( 0 ... 0 ) |
| 48 |
|
fz0sn |
⊢ ( 0 ... 0 ) = { 0 } |
| 49 |
47 48
|
eqtri |
⊢ ( 0 ... ( ♯ ‘ ∅ ) ) = { 0 } |
| 50 |
45 49
|
eqtrdi |
⊢ ( 𝑗 = ∅ → ( 0 ... ( ♯ ‘ 𝑗 ) ) = { 0 } ) |
| 51 |
|
mpteq1 |
⊢ ( 𝑗 = ∅ → ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ∅ ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) |
| 52 |
|
mpt0 |
⊢ ( 𝑛 ∈ ∅ ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) = ∅ |
| 53 |
51 52
|
eqtrdi |
⊢ ( 𝑗 = ∅ → ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) = ∅ ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝑗 = ∅ → ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) = ( 𝑀 Σg ∅ ) ) |
| 55 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 56 |
55
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
| 57 |
54 56
|
eqtrdi |
⊢ ( 𝑗 = ∅ → ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) = ( 0g ‘ 𝑀 ) ) |
| 58 |
57
|
fveq2d |
⊢ ( 𝑗 = ∅ → ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ) |
| 59 |
44
|
oveq1d |
⊢ ( 𝑗 = ∅ → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( ( ♯ ‘ ∅ ) − 𝑘 ) ) |
| 60 |
46
|
oveq1i |
⊢ ( ( ♯ ‘ ∅ ) − 𝑘 ) = ( 0 − 𝑘 ) |
| 61 |
59 60
|
eqtrdi |
⊢ ( 𝑗 = ∅ → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( 0 − 𝑘 ) ) |
| 62 |
58 61
|
fveq12d |
⊢ ( 𝑗 = ∅ → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) ) |
| 63 |
|
oveq1 |
⊢ ( 𝑗 = ∅ → ( 𝑗 eval 𝑅 ) = ( ∅ eval 𝑅 ) ) |
| 64 |
|
oveq1 |
⊢ ( 𝑗 = ∅ → ( 𝑗 eSymPoly 𝑅 ) = ( ∅ eSymPoly 𝑅 ) ) |
| 65 |
64
|
fveq1d |
⊢ ( 𝑗 = ∅ → ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) = ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) |
| 66 |
63 65
|
fveq12d |
⊢ ( 𝑗 = ∅ → ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ) |
| 67 |
66
|
fveq1d |
⊢ ( 𝑗 = ∅ → ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 68 |
67
|
oveq2d |
⊢ ( 𝑗 = ∅ → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 69 |
62 68
|
eqeq12d |
⊢ ( 𝑗 = ∅ → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 70 |
50 69
|
raleqbidv |
⊢ ( 𝑗 = ∅ → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 71 |
43 70
|
raleqbidv |
⊢ ( 𝑗 = ∅ → ( ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑗 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ { ∅ } ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 72 |
|
oveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐵 ↑m 𝑗 ) = ( 𝐵 ↑m 𝑖 ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( ♯ ‘ 𝑗 ) = ( ♯ ‘ 𝑖 ) ) |
| 74 |
73
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( 0 ... ( ♯ ‘ 𝑗 ) ) = ( 0 ... ( ♯ ‘ 𝑖 ) ) ) |
| 75 |
|
mpteq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) |
| 76 |
75
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) |
| 77 |
76
|
fveq2d |
⊢ ( 𝑗 = 𝑖 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ) |
| 78 |
73
|
oveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) |
| 79 |
77 78
|
fveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) ) |
| 80 |
|
oveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 eval 𝑅 ) = ( 𝑖 eval 𝑅 ) ) |
| 81 |
|
oveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 eSymPoly 𝑅 ) = ( 𝑖 eSymPoly 𝑅 ) ) |
| 82 |
81
|
fveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) = ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) |
| 83 |
80 82
|
fveq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ) |
| 84 |
83
|
fveq1d |
⊢ ( 𝑗 = 𝑖 → ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 85 |
84
|
oveq2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 86 |
79 85
|
eqeq12d |
⊢ ( 𝑗 = 𝑖 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 87 |
74 86
|
raleqbidv |
⊢ ( 𝑗 = 𝑖 → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 88 |
72 87
|
raleqbidv |
⊢ ( 𝑗 = 𝑖 → ( ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑗 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 89 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝐵 ↑m 𝑗 ) = ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) |
| 90 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ♯ ‘ 𝑗 ) = ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) |
| 91 |
90
|
oveq2d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 0 ... ( ♯ ‘ 𝑗 ) ) = ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) |
| 92 |
|
mpteq1 |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) |
| 93 |
92
|
oveq2d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) |
| 94 |
93
|
fveq2d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ) |
| 95 |
90
|
oveq1d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) |
| 96 |
94 95
|
fveq12d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) |
| 97 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝑗 eval 𝑅 ) = ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ) |
| 98 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝑗 eSymPoly 𝑅 ) = ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ) |
| 99 |
98
|
fveq1d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) |
| 100 |
97 99
|
fveq12d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ) |
| 101 |
100
|
fveq1d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 102 |
101
|
oveq2d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 103 |
96 102
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 104 |
91 103
|
raleqbidv |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 105 |
89 104
|
raleqbidv |
⊢ ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑗 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 106 |
|
oveq2 |
⊢ ( 𝑗 = 𝐼 → ( 𝐵 ↑m 𝑗 ) = ( 𝐵 ↑m 𝐼 ) ) |
| 107 |
|
fveq2 |
⊢ ( 𝑗 = 𝐼 → ( ♯ ‘ 𝑗 ) = ( ♯ ‘ 𝐼 ) ) |
| 108 |
107 13
|
eqtr4di |
⊢ ( 𝑗 = 𝐼 → ( ♯ ‘ 𝑗 ) = 𝐻 ) |
| 109 |
108
|
oveq2d |
⊢ ( 𝑗 = 𝐼 → ( 0 ... ( ♯ ‘ 𝑗 ) ) = ( 0 ... 𝐻 ) ) |
| 110 |
|
mpteq1 |
⊢ ( 𝑗 = 𝐼 → ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) |
| 111 |
110
|
oveq2d |
⊢ ( 𝑗 = 𝐼 → ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) |
| 112 |
111
|
fveq2d |
⊢ ( 𝑗 = 𝐼 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ) |
| 113 |
108
|
oveq1d |
⊢ ( 𝑗 = 𝐼 → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( 𝐻 − 𝑘 ) ) |
| 114 |
112 113
|
fveq12d |
⊢ ( 𝑗 = 𝐼 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( 𝐻 − 𝑘 ) ) ) |
| 115 |
|
oveq1 |
⊢ ( 𝑗 = 𝐼 → ( 𝑗 eval 𝑅 ) = ( 𝐼 eval 𝑅 ) ) |
| 116 |
115 5
|
eqtr4di |
⊢ ( 𝑗 = 𝐼 → ( 𝑗 eval 𝑅 ) = 𝑄 ) |
| 117 |
|
oveq1 |
⊢ ( 𝑗 = 𝐼 → ( 𝑗 eSymPoly 𝑅 ) = ( 𝐼 eSymPoly 𝑅 ) ) |
| 118 |
117 6
|
eqtr4di |
⊢ ( 𝑗 = 𝐼 → ( 𝑗 eSymPoly 𝑅 ) = 𝐸 ) |
| 119 |
118
|
fveq1d |
⊢ ( 𝑗 = 𝐼 → ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) = ( 𝐸 ‘ 𝑘 ) ) |
| 120 |
116 119
|
fveq12d |
⊢ ( 𝑗 = 𝐼 → ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ) |
| 121 |
120
|
fveq1d |
⊢ ( 𝑗 = 𝐼 → ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 122 |
121
|
oveq2d |
⊢ ( 𝑗 = 𝐼 → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 123 |
114 122
|
eqeq12d |
⊢ ( 𝑗 = 𝐼 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( 𝐻 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 124 |
109 123
|
raleqbidv |
⊢ ( 𝑗 = 𝐼 → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝐻 ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( 𝐻 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 125 |
106 124
|
raleqbidv |
⊢ ( 𝑗 = 𝐼 → ( ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑗 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑗 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝐼 ) ∀ 𝑘 ∈ ( 0 ... 𝐻 ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( 𝐻 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 126 |
15
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 127 |
2 8 126
|
ringidcld |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 128 |
2 9 8 126 127
|
ringlidmd |
⊢ ( 𝜑 → ( 1 · 1 ) = 1 ) |
| 129 |
126
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 130 |
2 7 129 127
|
grpinvcld |
⊢ ( 𝜑 → ( 𝑁 ‘ 1 ) ∈ 𝐵 ) |
| 131 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 132 |
131 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 133 |
131 8
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 134 |
132 133 12
|
mulg0 |
⊢ ( ( 𝑁 ‘ 1 ) ∈ 𝐵 → ( 0 ↑ ( 𝑁 ‘ 1 ) ) = 1 ) |
| 135 |
130 134
|
syl |
⊢ ( 𝜑 → ( 0 ↑ ( 𝑁 ‘ 1 ) ) = 1 ) |
| 136 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 137 |
136 8
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = 1 ) |
| 138 |
126 137
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = 1 ) |
| 139 |
138
|
sneqd |
⊢ ( 𝜑 → { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } = { 1 } ) |
| 140 |
139
|
xpeq2d |
⊢ ( 𝜑 → ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) = ( { ∅ } × { 1 } ) ) |
| 141 |
|
0ex |
⊢ ∅ ∈ V |
| 142 |
141
|
a1i |
⊢ ( 𝜑 → ∅ ∈ V ) |
| 143 |
8
|
fvexi |
⊢ 1 ∈ V |
| 144 |
143
|
a1i |
⊢ ( 𝜑 → 1 ∈ V ) |
| 145 |
|
xpsng |
⊢ ( ( ∅ ∈ V ∧ 1 ∈ V ) → ( { ∅ } × { 1 } ) = { 〈 ∅ , 1 〉 } ) |
| 146 |
142 144 145
|
syl2anc |
⊢ ( 𝜑 → ( { ∅ } × { 1 } ) = { 〈 ∅ , 1 〉 } ) |
| 147 |
|
0xp |
⊢ ( ∅ × { 0 } ) = ∅ |
| 148 |
147
|
eqcomi |
⊢ ∅ = ( ∅ × { 0 } ) |
| 149 |
148
|
eqeq2i |
⊢ ( 𝑓 = ∅ ↔ 𝑓 = ( ∅ × { 0 } ) ) |
| 150 |
149
|
biimpi |
⊢ ( 𝑓 = ∅ → 𝑓 = ( ∅ × { 0 } ) ) |
| 151 |
150
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 = ∅ ) → 𝑓 = ( ∅ × { 0 } ) ) |
| 152 |
151
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑓 = ∅ ) → if ( 𝑓 = ( ∅ × { 0 } ) , 1 , ( 0g ‘ 𝑅 ) ) = 1 ) |
| 153 |
152 142 144
|
fmptsnd |
⊢ ( 𝜑 → { 〈 ∅ , 1 〉 } = ( 𝑓 ∈ { ∅ } ↦ if ( 𝑓 = ( ∅ × { 0 } ) , 1 , ( 0g ‘ 𝑅 ) ) ) ) |
| 154 |
140 146 153
|
3eqtrd |
⊢ ( 𝜑 → ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) = ( 𝑓 ∈ { ∅ } ↦ if ( 𝑓 = ( ∅ × { 0 } ) , 1 , ( 0g ‘ 𝑅 ) ) ) ) |
| 155 |
|
elsni |
⊢ ( ℎ ∈ { ∅ } → ℎ = ∅ ) |
| 156 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 157 |
|
mapdm0 |
⊢ ( ℕ0 ∈ V → ( ℕ0 ↑m ∅ ) = { ∅ } ) |
| 158 |
156 157
|
ax-mp |
⊢ ( ℕ0 ↑m ∅ ) = { ∅ } |
| 159 |
155 158
|
eleq2s |
⊢ ( ℎ ∈ ( ℕ0 ↑m ∅ ) → ℎ = ∅ ) |
| 160 |
159
|
cnveqd |
⊢ ( ℎ ∈ ( ℕ0 ↑m ∅ ) → ◡ ℎ = ◡ ∅ ) |
| 161 |
160
|
imaeq1d |
⊢ ( ℎ ∈ ( ℕ0 ↑m ∅ ) → ( ◡ ℎ “ ℕ ) = ( ◡ ∅ “ ℕ ) ) |
| 162 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
| 163 |
162
|
imaeq1i |
⊢ ( ◡ ∅ “ ℕ ) = ( ∅ “ ℕ ) |
| 164 |
|
0ima |
⊢ ( ∅ “ ℕ ) = ∅ |
| 165 |
163 164
|
eqtri |
⊢ ( ◡ ∅ “ ℕ ) = ∅ |
| 166 |
161 165
|
eqtrdi |
⊢ ( ℎ ∈ ( ℕ0 ↑m ∅ ) → ( ◡ ℎ “ ℕ ) = ∅ ) |
| 167 |
|
0fi |
⊢ ∅ ∈ Fin |
| 168 |
166 167
|
eqeltrdi |
⊢ ( ℎ ∈ ( ℕ0 ↑m ∅ ) → ( ◡ ℎ “ ℕ ) ∈ Fin ) |
| 169 |
168
|
rabeqc |
⊢ { ℎ ∈ ( ℕ0 ↑m ∅ ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = ( ℕ0 ↑m ∅ ) |
| 170 |
169 158
|
eqtr2i |
⊢ { ∅ } = { ℎ ∈ ( ℕ0 ↑m ∅ ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 171 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m ∅ ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m ∅ ) ∣ ℎ finSupp 0 } |
| 172 |
171
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m ∅ ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m ∅ ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 173 |
170 172
|
eqtr4i |
⊢ { ∅ } = { ℎ ∈ ( ℕ0 ↑m ∅ ) ∣ ℎ finSupp 0 } |
| 174 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 175 |
174
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 176 |
173 142 15 175
|
esplyfval |
⊢ ( 𝜑 → ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ∅ } ) ‘ ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) ) ) |
| 177 |
|
fveqeq2 |
⊢ ( 𝑐 = ∅ → ( ( ♯ ‘ 𝑐 ) = 0 ↔ ( ♯ ‘ ∅ ) = 0 ) ) |
| 178 |
|
0elpw |
⊢ ∅ ∈ 𝒫 ∅ |
| 179 |
178
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 ∅ ) |
| 180 |
46
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ ∅ ) = 0 ) |
| 181 |
|
hasheq0 |
⊢ ( 𝑐 ∈ 𝒫 ∅ → ( ( ♯ ‘ 𝑐 ) = 0 ↔ 𝑐 = ∅ ) ) |
| 182 |
181
|
biimpa |
⊢ ( ( 𝑐 ∈ 𝒫 ∅ ∧ ( ♯ ‘ 𝑐 ) = 0 ) → 𝑐 = ∅ ) |
| 183 |
182
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 ∅ ) ∧ ( ♯ ‘ 𝑐 ) = 0 ) → 𝑐 = ∅ ) |
| 184 |
177 179 180 183
|
rabeqsnd |
⊢ ( 𝜑 → { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } = { ∅ } ) |
| 185 |
184
|
imaeq2d |
⊢ ( 𝜑 → ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) = ( ( 𝟭 ‘ ∅ ) “ { ∅ } ) ) |
| 186 |
|
pw0 |
⊢ 𝒫 ∅ = { ∅ } |
| 187 |
186
|
a1i |
⊢ ( 𝜑 → 𝒫 ∅ = { ∅ } ) |
| 188 |
|
indf1o |
⊢ ( ∅ ∈ V → ( 𝟭 ‘ ∅ ) : 𝒫 ∅ –1-1-onto→ ( { 0 , 1 } ↑m ∅ ) ) |
| 189 |
|
f1of |
⊢ ( ( 𝟭 ‘ ∅ ) : 𝒫 ∅ –1-1-onto→ ( { 0 , 1 } ↑m ∅ ) → ( 𝟭 ‘ ∅ ) : 𝒫 ∅ ⟶ ( { 0 , 1 } ↑m ∅ ) ) |
| 190 |
142 188 189
|
3syl |
⊢ ( 𝜑 → ( 𝟭 ‘ ∅ ) : 𝒫 ∅ ⟶ ( { 0 , 1 } ↑m ∅ ) ) |
| 191 |
187 190
|
feq2dd |
⊢ ( 𝜑 → ( 𝟭 ‘ ∅ ) : { ∅ } ⟶ ( { 0 , 1 } ↑m ∅ ) ) |
| 192 |
191
|
ffnd |
⊢ ( 𝜑 → ( 𝟭 ‘ ∅ ) Fn { ∅ } ) |
| 193 |
141
|
snid |
⊢ ∅ ∈ { ∅ } |
| 194 |
193
|
a1i |
⊢ ( 𝜑 → ∅ ∈ { ∅ } ) |
| 195 |
192 194
|
fnimasnd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ ∅ ) “ { ∅ } ) = { ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) } ) |
| 196 |
|
ssidd |
⊢ ( 𝜑 → ∅ ⊆ ∅ ) |
| 197 |
|
indf |
⊢ ( ( ∅ ∈ V ∧ ∅ ⊆ ∅ ) → ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) : ∅ ⟶ { 0 , 1 } ) |
| 198 |
142 196 197
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) : ∅ ⟶ { 0 , 1 } ) |
| 199 |
|
f0bi |
⊢ ( ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) : ∅ ⟶ { 0 , 1 } ↔ ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) = ∅ ) |
| 200 |
198 199
|
sylib |
⊢ ( 𝜑 → ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) = ∅ ) |
| 201 |
200
|
sneqd |
⊢ ( 𝜑 → { ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) } = { ∅ } ) |
| 202 |
185 195 201
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) = { ∅ } ) |
| 203 |
202
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝟭 ‘ { ∅ } ) ‘ ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) = ( ( 𝟭 ‘ { ∅ } ) ‘ { ∅ } ) ) |
| 204 |
|
p0ex |
⊢ { ∅ } ∈ V |
| 205 |
|
indconst1 |
⊢ ( { ∅ } ∈ V → ( ( 𝟭 ‘ { ∅ } ) ‘ { ∅ } ) = ( { ∅ } × { 1 } ) ) |
| 206 |
204 205
|
ax-mp |
⊢ ( ( 𝟭 ‘ { ∅ } ) ‘ { ∅ } ) = ( { ∅ } × { 1 } ) |
| 207 |
203 206
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝟭 ‘ { ∅ } ) ‘ ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) = ( { ∅ } × { 1 } ) ) |
| 208 |
207
|
coeq2d |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ∅ } ) ‘ ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( { ∅ } × { 1 } ) ) ) |
| 209 |
136
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
| 210 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 211 |
210 2
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ 𝐵 ) |
| 212 |
126 209 211
|
3syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ 𝐵 ) |
| 213 |
212
|
ffnd |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) Fn ℤ ) |
| 214 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 215 |
|
fcoconst |
⊢ ( ( ( ℤRHom ‘ 𝑅 ) Fn ℤ ∧ 1 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( { ∅ } × { 1 } ) ) = ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) ) |
| 216 |
213 214 215
|
syl2anc |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( { ∅ } × { 1 } ) ) = ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) ) |
| 217 |
176 208 216
|
3eqtrd |
⊢ ( 𝜑 → ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) = ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) ) |
| 218 |
|
eqid |
⊢ ( ∅ mPoly 𝑅 ) = ( ∅ mPoly 𝑅 ) |
| 219 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 220 |
|
eqid |
⊢ ( algSc ‘ ( ∅ mPoly 𝑅 ) ) = ( algSc ‘ ( ∅ mPoly 𝑅 ) ) |
| 221 |
218 170 219 2 220 142 126 127
|
mplascl |
⊢ ( 𝜑 → ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) = ( 𝑓 ∈ { ∅ } ↦ if ( 𝑓 = ( ∅ × { 0 } ) , 1 , ( 0g ‘ 𝑅 ) ) ) ) |
| 222 |
154 217 221
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) = ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) ) |
| 223 |
222
|
fveq2d |
⊢ ( 𝜑 → ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) = ( ( ∅ eval 𝑅 ) ‘ ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) ) ) |
| 224 |
223
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) = ( ( ( ∅ eval 𝑅 ) ‘ ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) ) ‘ ∅ ) ) |
| 225 |
|
eqid |
⊢ ( ∅ eval 𝑅 ) = ( ∅ eval 𝑅 ) |
| 226 |
193 158
|
eleqtrri |
⊢ ∅ ∈ ( ℕ0 ↑m ∅ ) |
| 227 |
226
|
a1i |
⊢ ( 𝜑 → ∅ ∈ ( ℕ0 ↑m ∅ ) ) |
| 228 |
15
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 229 |
225 218 2 220 227 228 127
|
evlsca |
⊢ ( 𝜑 → ( ( ∅ eval 𝑅 ) ‘ ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) ) = ( ( 𝐵 ↑m ∅ ) × { 1 } ) ) |
| 230 |
229
|
fveq1d |
⊢ ( 𝜑 → ( ( ( ∅ eval 𝑅 ) ‘ ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) ) ‘ ∅ ) = ( ( ( 𝐵 ↑m ∅ ) × { 1 } ) ‘ ∅ ) ) |
| 231 |
193 42
|
eleqtrri |
⊢ ∅ ∈ ( 𝐵 ↑m ∅ ) |
| 232 |
143
|
fvconst2 |
⊢ ( ∅ ∈ ( 𝐵 ↑m ∅ ) → ( ( ( 𝐵 ↑m ∅ ) × { 1 } ) ‘ ∅ ) = 1 ) |
| 233 |
231 232
|
mp1i |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑m ∅ ) × { 1 } ) ‘ ∅ ) = 1 ) |
| 234 |
224 230 233
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) = 1 ) |
| 235 |
135 234
|
oveq12d |
⊢ ( 𝜑 → ( ( 0 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) = ( 1 · 1 ) ) |
| 236 |
|
iftrue |
⊢ ( 𝑙 = 0 → if ( 𝑙 = 0 , 1 , ( 0g ‘ 𝑅 ) ) = 1 ) |
| 237 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
| 238 |
4 237
|
ringidval |
⊢ ( 1r ‘ 𝑊 ) = ( 0g ‘ 𝑀 ) |
| 239 |
238
|
eqcomi |
⊢ ( 0g ‘ 𝑀 ) = ( 1r ‘ 𝑊 ) |
| 240 |
1 239 219 8
|
coe1id |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ ( 0g ‘ 𝑀 ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , 1 , ( 0g ‘ 𝑅 ) ) ) ) |
| 241 |
126 240
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ ( 0g ‘ 𝑀 ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , 1 , ( 0g ‘ 𝑅 ) ) ) ) |
| 242 |
236 241 175 144
|
fvmptd4 |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ 0 ) = 1 ) |
| 243 |
128 235 242
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ 0 ) = ( ( 0 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) ) |
| 244 |
|
fveq2 |
⊢ ( 𝑧 = ∅ → ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) |
| 245 |
244
|
oveq2d |
⊢ ( 𝑧 = ∅ → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) ) |
| 246 |
245
|
eqeq2d |
⊢ ( 𝑧 = ∅ → ( ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) ) ) |
| 247 |
246
|
ralbidv |
⊢ ( 𝑧 = ∅ → ( ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) ) ) |
| 248 |
|
c0ex |
⊢ 0 ∈ V |
| 249 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = ( 0 − 0 ) ) |
| 250 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 251 |
249 250
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 − 𝑘 ) = 0 ) |
| 252 |
251
|
fveq2d |
⊢ ( 𝑘 = 0 → ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ 0 ) ) |
| 253 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) = ( 0 ↑ ( 𝑁 ‘ 1 ) ) ) |
| 254 |
|
2fveq3 |
⊢ ( 𝑘 = 0 → ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ) |
| 255 |
254
|
fveq1d |
⊢ ( 𝑘 = 0 → ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) = ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) |
| 256 |
253 255
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) = ( ( 0 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) ) |
| 257 |
252 256
|
eqeq12d |
⊢ ( 𝑘 = 0 → ( ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) ↔ ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ 0 ) = ( ( 0 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) ) ) |
| 258 |
248 257
|
ralsn |
⊢ ( ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) ↔ ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ 0 ) = ( ( 0 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) ) |
| 259 |
247 258
|
bitrdi |
⊢ ( 𝑧 = ∅ → ( ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ 0 ) = ( ( 0 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) ) ) |
| 260 |
141 259
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { ∅ } ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ 0 ) = ( ( 0 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) ) |
| 261 |
243 260
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ { ∅ } ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g ‘ 𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 262 |
|
nfv |
⊢ Ⅎ 𝑧 ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) |
| 263 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 264 |
262 263
|
nfan |
⊢ Ⅎ 𝑧 ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 265 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) |
| 266 |
|
nfra2w |
⊢ Ⅎ 𝑘 ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 267 |
265 266
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 268 |
|
nfv |
⊢ Ⅎ 𝑘 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) |
| 269 |
267 268
|
nfan |
⊢ Ⅎ 𝑘 ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) |
| 270 |
|
eqid |
⊢ ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) = ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) |
| 271 |
|
eqid |
⊢ ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) = ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) |
| 272 |
|
eqid |
⊢ ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) = ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) |
| 273 |
14
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝐼 ∈ Fin ) |
| 274 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑖 ⊆ 𝐼 ) |
| 275 |
273 274
|
ssfid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑖 ∈ Fin ) |
| 276 |
|
snfi |
⊢ { 𝑚 } ∈ Fin |
| 277 |
276
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → { 𝑚 } ∈ Fin ) |
| 278 |
275 277
|
unfid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( 𝑖 ∪ { 𝑚 } ) ∈ Fin ) |
| 279 |
15
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑅 ∈ IDomn ) |
| 280 |
40
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝐵 ∈ V ) |
| 281 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) |
| 282 |
278 280 281
|
elmaprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑧 : ( 𝑖 ∪ { 𝑚 } ) ⟶ 𝐵 ) |
| 283 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑜 → ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) = ( 𝐴 ‘ ( 𝑧 ‘ 𝑜 ) ) ) |
| 284 |
283
|
oveq2d |
⊢ ( 𝑛 = 𝑜 → ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) = ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑜 ) ) ) ) |
| 285 |
284
|
cbvmptv |
⊢ ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) = ( 𝑜 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑜 ) ) ) ) |
| 286 |
285
|
oveq2i |
⊢ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑜 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑜 ) ) ) ) ) |
| 287 |
|
fznn0sub2 |
⊢ ( 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) → ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) |
| 288 |
287
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) |
| 289 |
|
ssun2 |
⊢ { 𝑚 } ⊆ ( 𝑖 ∪ { 𝑚 } ) |
| 290 |
|
vsnid |
⊢ 𝑚 ∈ { 𝑚 } |
| 291 |
289 290
|
sselii |
⊢ 𝑚 ∈ ( 𝑖 ∪ { 𝑚 } ) |
| 292 |
291
|
a1i |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑚 ∈ ( 𝑖 ∪ { 𝑚 } ) ) |
| 293 |
|
eqid |
⊢ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) = ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) |
| 294 |
|
fveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ‘ 𝑛 ) = ( 𝑦 ‘ 𝑛 ) ) |
| 295 |
294
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) = ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) |
| 296 |
295
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) = ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) |
| 297 |
296
|
mpteq2dv |
⊢ ( 𝑧 = 𝑦 → ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) |
| 298 |
297
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) |
| 299 |
298
|
fveq2d |
⊢ ( 𝑧 = 𝑦 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ) |
| 300 |
299
|
fveq1d |
⊢ ( 𝑧 = 𝑦 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) ) |
| 301 |
|
fveq2 |
⊢ ( 𝑧 = 𝑦 → ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) |
| 302 |
301
|
oveq2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ) |
| 303 |
300 302
|
eqeq12d |
⊢ ( 𝑧 = 𝑦 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ) ) |
| 304 |
303
|
ralbidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ) ) |
| 305 |
304
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ) |
| 306 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) |
| 307 |
306
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ¬ 𝑚 ∈ 𝑖 ) |
| 308 |
|
disjsn |
⊢ ( ( 𝑖 ∩ { 𝑚 } ) = ∅ ↔ ¬ 𝑚 ∈ 𝑖 ) |
| 309 |
307 308
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( 𝑖 ∩ { 𝑚 } ) = ∅ ) |
| 310 |
|
undif5 |
⊢ ( ( 𝑖 ∩ { 𝑚 } ) = ∅ → ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) = 𝑖 ) |
| 311 |
309 310
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) = 𝑖 ) |
| 312 |
311
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → 𝑖 = ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) |
| 313 |
312
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( 𝐵 ↑m 𝑖 ) = ( 𝐵 ↑m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) |
| 314 |
|
oveq2 |
⊢ ( 𝑘 = 𝑙 → ( ( ♯ ‘ 𝑖 ) − 𝑘 ) = ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) |
| 315 |
314
|
fveq2d |
⊢ ( 𝑘 = 𝑙 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) ) |
| 316 |
|
oveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) = ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) ) |
| 317 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ) |
| 318 |
317
|
fveq1d |
⊢ ( 𝑘 = 𝑙 → ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) = ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) |
| 319 |
316 318
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) |
| 320 |
315 319
|
eqeq12d |
⊢ ( 𝑘 = 𝑙 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
| 321 |
320
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ↔ ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) |
| 322 |
312
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ♯ ‘ 𝑖 ) = ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) |
| 323 |
322
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( 0 ... ( ♯ ‘ 𝑖 ) ) = ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ) |
| 324 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑜 → ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) = ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) |
| 325 |
324
|
oveq2d |
⊢ ( 𝑛 = 𝑜 → ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) = ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) |
| 326 |
325
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) = ( 𝑜 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) |
| 327 |
312
|
mpteq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( 𝑜 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) = ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) |
| 328 |
326 327
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) = ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) |
| 329 |
328
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) |
| 330 |
329
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) ) |
| 331 |
322
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ( ♯ ‘ 𝑖 ) − 𝑙 ) = ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) |
| 332 |
330 331
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) ) |
| 333 |
312
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( 𝑖 eval 𝑅 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ) |
| 334 |
312
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( 𝑖 eSymPoly 𝑅 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ) |
| 335 |
334
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) = ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) |
| 336 |
333 335
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) = ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ) |
| 337 |
336
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) = ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) |
| 338 |
337
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) |
| 339 |
332 338
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
| 340 |
323 339
|
raleqbidv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ↔ ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
| 341 |
321 340
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ↔ ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
| 342 |
313 341
|
raleqbidv |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ∀ 𝑦 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵 ↑m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
| 343 |
305 342
|
bitrid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵 ↑m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) ) |
| 344 |
343
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) → ∀ 𝑦 ∈ ( 𝐵 ↑m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) |
| 345 |
344
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ∀ 𝑦 ∈ ( 𝐵 ↑m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑦 ‘ 𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) |
| 346 |
|
eqid |
⊢ ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) |
| 347 |
|
eqid |
⊢ ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) |
| 348 |
|
eqid |
⊢ ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) = ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) |
| 349 |
|
difssd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ⊆ ( 𝑖 ∪ { 𝑚 } ) ) |
| 350 |
278 349
|
ssfid |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ∈ Fin ) |
| 351 |
282 349
|
fssresd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( 𝑧 ↾ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) : ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ⟶ 𝐵 ) |
| 352 |
|
eqid |
⊢ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( ( 𝑧 ↾ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ‘ 𝑜 ) ) ) ) ) = ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( ( 𝑧 ↾ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ‘ 𝑜 ) ) ) ) ) |
| 353 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
| 354 |
1 2 3 4 346 347 7 8 9 10 11 12 348 350 279 351 352 353
|
vietadeg1 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( ( 𝑧 ↾ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ‘ 𝑜 ) ) ) ) ) ) = ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) |
| 355 |
1 2 3 4 270 271 7 8 9 10 11 12 272 278 279 282 286 288 292 293 345 354
|
vietalem |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) ‘ 𝑧 ) ) ) |
| 356 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → 𝐼 ∈ Fin ) |
| 357 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → 𝑖 ⊆ 𝐼 ) |
| 358 |
356 357
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → 𝑖 ∈ Fin ) |
| 359 |
276
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → { 𝑚 } ∈ Fin ) |
| 360 |
358 359
|
unfid |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( 𝑖 ∪ { 𝑚 } ) ∈ Fin ) |
| 361 |
360
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( 𝑖 ∪ { 𝑚 } ) ∈ Fin ) |
| 362 |
|
hashcl |
⊢ ( ( 𝑖 ∪ { 𝑚 } ) ∈ Fin → ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ∈ ℕ0 ) |
| 363 |
361 362
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ∈ ℕ0 ) |
| 364 |
363
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ∈ ℂ ) |
| 365 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) → 𝑘 ∈ ℕ0 ) |
| 366 |
365
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑘 ∈ ℕ0 ) |
| 367 |
366
|
nn0cnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑘 ∈ ℂ ) |
| 368 |
364 367
|
nncand |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = 𝑘 ) |
| 369 |
368
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ↑ ( 𝑁 ‘ 1 ) ) = ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) ) |
| 370 |
368
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) = ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) |
| 371 |
370
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) = ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ) |
| 372 |
371
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) |
| 373 |
369 372
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 374 |
373
|
ad4ant14 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 375 |
355 374
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 376 |
269 375
|
ralrimia |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ) → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 377 |
264 376
|
ralrimia |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) → ∀ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 378 |
377
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑖 ⊆ 𝐼 ) ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) → ( ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) → ∀ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 379 |
378
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑖 ⊆ 𝐼 ∧ 𝑚 ∈ ( 𝐼 ∖ 𝑖 ) ) ) → ( ∀ 𝑧 ∈ ( 𝐵 ↑m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝑖 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) → ∀ 𝑧 ∈ ( 𝐵 ↑m ( 𝑖 ∪ { 𝑚 } ) ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ) |
| 380 |
71 88 105 125 261 379 14
|
findcard2d |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝐵 ↑m 𝐼 ) ∀ 𝑘 ∈ ( 0 ... 𝐻 ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ 𝐼 ↦ ( 𝑋 − ( 𝐴 ‘ ( 𝑧 ‘ 𝑛 ) ) ) ) ) ) ‘ ( 𝐻 − 𝑘 ) ) = ( ( 𝑘 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) |
| 381 |
40
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 382 |
381 14 16
|
elmapdd |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) |
| 383 |
31 38 380 382 18
|
rspc2dv |
⊢ ( 𝜑 → ( 𝐶 ‘ ( 𝐻 − 𝐾 ) ) = ( ( 𝐾 ↑ ( 𝑁 ‘ 1 ) ) · ( ( 𝑄 ‘ ( 𝐸 ‘ 𝐾 ) ) ‘ 𝑍 ) ) ) |