Metamath Proof Explorer


Theorem vieta

Description: Vieta's Formulas: Coefficients of a monic polynomial F expressed as a product of linear polynomials of the form X - Z can be expressed in terms of elementary symmetric polynomials. The formulas appear in Chapter 6 of Lang, p. 190. Theorem vieta1 is a special case for the complex numbers, for the case K = 1 . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses vieta.w 𝑊 = ( Poly1𝑅 )
vieta.b 𝐵 = ( Base ‘ 𝑅 )
vieta.3 = ( -g𝑊 )
vieta.m 𝑀 = ( mulGrp ‘ 𝑊 )
vieta.q 𝑄 = ( 𝐼 eval 𝑅 )
vieta.e 𝐸 = ( 𝐼 eSymPoly 𝑅 )
vieta.n 𝑁 = ( invg𝑅 )
vieta.1 1 = ( 1r𝑅 )
vieta.t · = ( .r𝑅 )
vieta.x 𝑋 = ( var1𝑅 )
vieta.a 𝐴 = ( algSc ‘ 𝑊 )
vieta.p = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
vieta.h 𝐻 = ( ♯ ‘ 𝐼 )
vieta.i ( 𝜑𝐼 ∈ Fin )
vieta.r ( 𝜑𝑅 ∈ IDomn )
vieta.z ( 𝜑𝑍 : 𝐼𝐵 )
vieta.f 𝐹 = ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑍𝑛 ) ) ) ) )
vieta.k ( 𝜑𝐾 ∈ ( 0 ... 𝐻 ) )
vieta.c 𝐶 = ( coe1𝐹 )
Assertion vieta ( 𝜑 → ( 𝐶 ‘ ( 𝐻𝐾 ) ) = ( ( 𝐾 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝐾 ) ) ‘ 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 vieta.w 𝑊 = ( Poly1𝑅 )
2 vieta.b 𝐵 = ( Base ‘ 𝑅 )
3 vieta.3 = ( -g𝑊 )
4 vieta.m 𝑀 = ( mulGrp ‘ 𝑊 )
5 vieta.q 𝑄 = ( 𝐼 eval 𝑅 )
6 vieta.e 𝐸 = ( 𝐼 eSymPoly 𝑅 )
7 vieta.n 𝑁 = ( invg𝑅 )
8 vieta.1 1 = ( 1r𝑅 )
9 vieta.t · = ( .r𝑅 )
10 vieta.x 𝑋 = ( var1𝑅 )
11 vieta.a 𝐴 = ( algSc ‘ 𝑊 )
12 vieta.p = ( .g ‘ ( mulGrp ‘ 𝑅 ) )
13 vieta.h 𝐻 = ( ♯ ‘ 𝐼 )
14 vieta.i ( 𝜑𝐼 ∈ Fin )
15 vieta.r ( 𝜑𝑅 ∈ IDomn )
16 vieta.z ( 𝜑𝑍 : 𝐼𝐵 )
17 vieta.f 𝐹 = ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑍𝑛 ) ) ) ) )
18 vieta.k ( 𝜑𝐾 ∈ ( 0 ... 𝐻 ) )
19 vieta.c 𝐶 = ( coe1𝐹 )
20 fveq1 ( 𝑧 = 𝑍 → ( 𝑧𝑛 ) = ( 𝑍𝑛 ) )
21 20 fveq2d ( 𝑧 = 𝑍 → ( 𝐴 ‘ ( 𝑧𝑛 ) ) = ( 𝐴 ‘ ( 𝑍𝑛 ) ) )
22 21 oveq2d ( 𝑧 = 𝑍 → ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) = ( 𝑋 ( 𝐴 ‘ ( 𝑍𝑛 ) ) ) )
23 22 mpteq2dv ( 𝑧 = 𝑍 → ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) = ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑍𝑛 ) ) ) ) )
24 23 oveq2d ( 𝑧 = 𝑍 → ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑍𝑛 ) ) ) ) ) )
25 24 17 eqtr4di ( 𝑧 = 𝑍 → ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) = 𝐹 )
26 25 fveq2d ( 𝑧 = 𝑍 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) = ( coe1𝐹 ) )
27 26 19 eqtr4di ( 𝑧 = 𝑍 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) = 𝐶 )
28 27 fveq1d ( 𝑧 = 𝑍 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( 𝐻𝑘 ) ) = ( 𝐶 ‘ ( 𝐻𝑘 ) ) )
29 fveq2 ( 𝑧 = 𝑍 → ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑧 ) = ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑍 ) )
30 29 oveq2d ( 𝑧 = 𝑍 → ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑍 ) ) )
31 28 30 eqeq12d ( 𝑧 = 𝑍 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( 𝐻𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑧 ) ) ↔ ( 𝐶 ‘ ( 𝐻𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑍 ) ) ) )
32 oveq2 ( 𝑘 = 𝐾 → ( 𝐻𝑘 ) = ( 𝐻𝐾 ) )
33 32 fveq2d ( 𝑘 = 𝐾 → ( 𝐶 ‘ ( 𝐻𝑘 ) ) = ( 𝐶 ‘ ( 𝐻𝐾 ) ) )
34 oveq1 ( 𝑘 = 𝐾 → ( 𝑘 ( 𝑁1 ) ) = ( 𝐾 ( 𝑁1 ) ) )
35 2fveq3 ( 𝑘 = 𝐾 → ( 𝑄 ‘ ( 𝐸𝑘 ) ) = ( 𝑄 ‘ ( 𝐸𝐾 ) ) )
36 35 fveq1d ( 𝑘 = 𝐾 → ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑍 ) = ( ( 𝑄 ‘ ( 𝐸𝐾 ) ) ‘ 𝑍 ) )
37 34 36 oveq12d ( 𝑘 = 𝐾 → ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑍 ) ) = ( ( 𝐾 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝐾 ) ) ‘ 𝑍 ) ) )
38 33 37 eqeq12d ( 𝑘 = 𝐾 → ( ( 𝐶 ‘ ( 𝐻𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑍 ) ) ↔ ( 𝐶 ‘ ( 𝐻𝐾 ) ) = ( ( 𝐾 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝐾 ) ) ‘ 𝑍 ) ) ) )
39 oveq2 ( 𝑗 = ∅ → ( 𝐵m 𝑗 ) = ( 𝐵m ∅ ) )
40 2 fvexi 𝐵 ∈ V
41 mapdm0 ( 𝐵 ∈ V → ( 𝐵m ∅ ) = { ∅ } )
42 40 41 ax-mp ( 𝐵m ∅ ) = { ∅ }
43 39 42 eqtrdi ( 𝑗 = ∅ → ( 𝐵m 𝑗 ) = { ∅ } )
44 fveq2 ( 𝑗 = ∅ → ( ♯ ‘ 𝑗 ) = ( ♯ ‘ ∅ ) )
45 44 oveq2d ( 𝑗 = ∅ → ( 0 ... ( ♯ ‘ 𝑗 ) ) = ( 0 ... ( ♯ ‘ ∅ ) ) )
46 hash0 ( ♯ ‘ ∅ ) = 0
47 46 oveq2i ( 0 ... ( ♯ ‘ ∅ ) ) = ( 0 ... 0 )
48 fz0sn ( 0 ... 0 ) = { 0 }
49 47 48 eqtri ( 0 ... ( ♯ ‘ ∅ ) ) = { 0 }
50 45 49 eqtrdi ( 𝑗 = ∅ → ( 0 ... ( ♯ ‘ 𝑗 ) ) = { 0 } )
51 mpteq1 ( 𝑗 = ∅ → ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) = ( 𝑛 ∈ ∅ ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) )
52 mpt0 ( 𝑛 ∈ ∅ ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) = ∅
53 51 52 eqtrdi ( 𝑗 = ∅ → ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) = ∅ )
54 53 oveq2d ( 𝑗 = ∅ → ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) = ( 𝑀 Σg ∅ ) )
55 eqid ( 0g𝑀 ) = ( 0g𝑀 )
56 55 gsum0 ( 𝑀 Σg ∅ ) = ( 0g𝑀 )
57 54 56 eqtrdi ( 𝑗 = ∅ → ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) = ( 0g𝑀 ) )
58 57 fveq2d ( 𝑗 = ∅ → ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 0g𝑀 ) ) )
59 44 oveq1d ( 𝑗 = ∅ → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( ( ♯ ‘ ∅ ) − 𝑘 ) )
60 46 oveq1i ( ( ♯ ‘ ∅ ) − 𝑘 ) = ( 0 − 𝑘 )
61 59 60 eqtrdi ( 𝑗 = ∅ → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( 0 − 𝑘 ) )
62 58 61 fveq12d ( 𝑗 = ∅ → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) )
63 oveq1 ( 𝑗 = ∅ → ( 𝑗 eval 𝑅 ) = ( ∅ eval 𝑅 ) )
64 oveq1 ( 𝑗 = ∅ → ( 𝑗 eSymPoly 𝑅 ) = ( ∅ eSymPoly 𝑅 ) )
65 64 fveq1d ( 𝑗 = ∅ → ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) = ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) )
66 63 65 fveq12d ( 𝑗 = ∅ → ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) )
67 66 fveq1d ( 𝑗 = ∅ → ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) )
68 67 oveq2d ( 𝑗 = ∅ → ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
69 62 68 eqeq12d ( 𝑗 = ∅ → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
70 50 69 raleqbidv ( 𝑗 = ∅ → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
71 43 70 raleqbidv ( 𝑗 = ∅ → ( ∀ 𝑧 ∈ ( 𝐵m 𝑗 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ { ∅ } ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
72 oveq2 ( 𝑗 = 𝑖 → ( 𝐵m 𝑗 ) = ( 𝐵m 𝑖 ) )
73 fveq2 ( 𝑗 = 𝑖 → ( ♯ ‘ 𝑗 ) = ( ♯ ‘ 𝑖 ) )
74 73 oveq2d ( 𝑗 = 𝑖 → ( 0 ... ( ♯ ‘ 𝑗 ) ) = ( 0 ... ( ♯ ‘ 𝑖 ) ) )
75 mpteq1 ( 𝑗 = 𝑖 → ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) = ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) )
76 75 oveq2d ( 𝑗 = 𝑖 → ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) )
77 76 fveq2d ( 𝑗 = 𝑖 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) )
78 73 oveq1d ( 𝑗 = 𝑖 → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( ( ♯ ‘ 𝑖 ) − 𝑘 ) )
79 77 78 fveq12d ( 𝑗 = 𝑖 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) )
80 oveq1 ( 𝑗 = 𝑖 → ( 𝑗 eval 𝑅 ) = ( 𝑖 eval 𝑅 ) )
81 oveq1 ( 𝑗 = 𝑖 → ( 𝑗 eSymPoly 𝑅 ) = ( 𝑖 eSymPoly 𝑅 ) )
82 81 fveq1d ( 𝑗 = 𝑖 → ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) = ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) )
83 80 82 fveq12d ( 𝑗 = 𝑖 → ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) )
84 83 fveq1d ( 𝑗 = 𝑖 → ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) )
85 84 oveq2d ( 𝑗 = 𝑖 → ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
86 79 85 eqeq12d ( 𝑗 = 𝑖 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
87 74 86 raleqbidv ( 𝑗 = 𝑖 → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
88 72 87 raleqbidv ( 𝑗 = 𝑖 → ( ∀ 𝑧 ∈ ( 𝐵m 𝑗 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
89 oveq2 ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝐵m 𝑗 ) = ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) )
90 fveq2 ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ♯ ‘ 𝑗 ) = ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) )
91 90 oveq2d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 0 ... ( ♯ ‘ 𝑗 ) ) = ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) )
92 mpteq1 ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) = ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) )
93 92 oveq2d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) )
94 93 fveq2d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) )
95 90 oveq1d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) )
96 94 95 fveq12d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) )
97 oveq1 ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝑗 eval 𝑅 ) = ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) )
98 oveq1 ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( 𝑗 eSymPoly 𝑅 ) = ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) )
99 98 fveq1d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) )
100 97 99 fveq12d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) )
101 100 fveq1d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) )
102 101 oveq2d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
103 96 102 eqeq12d ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
104 91 103 raleqbidv ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
105 89 104 raleqbidv ( 𝑗 = ( 𝑖 ∪ { 𝑚 } ) → ( ∀ 𝑧 ∈ ( 𝐵m 𝑗 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
106 oveq2 ( 𝑗 = 𝐼 → ( 𝐵m 𝑗 ) = ( 𝐵m 𝐼 ) )
107 fveq2 ( 𝑗 = 𝐼 → ( ♯ ‘ 𝑗 ) = ( ♯ ‘ 𝐼 ) )
108 107 13 eqtr4di ( 𝑗 = 𝐼 → ( ♯ ‘ 𝑗 ) = 𝐻 )
109 108 oveq2d ( 𝑗 = 𝐼 → ( 0 ... ( ♯ ‘ 𝑗 ) ) = ( 0 ... 𝐻 ) )
110 mpteq1 ( 𝑗 = 𝐼 → ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) = ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) )
111 110 oveq2d ( 𝑗 = 𝐼 → ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) )
112 111 fveq2d ( 𝑗 = 𝐼 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) )
113 108 oveq1d ( 𝑗 = 𝐼 → ( ( ♯ ‘ 𝑗 ) − 𝑘 ) = ( 𝐻𝑘 ) )
114 112 113 fveq12d ( 𝑗 = 𝐼 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( 𝐻𝑘 ) ) )
115 oveq1 ( 𝑗 = 𝐼 → ( 𝑗 eval 𝑅 ) = ( 𝐼 eval 𝑅 ) )
116 115 5 eqtr4di ( 𝑗 = 𝐼 → ( 𝑗 eval 𝑅 ) = 𝑄 )
117 oveq1 ( 𝑗 = 𝐼 → ( 𝑗 eSymPoly 𝑅 ) = ( 𝐼 eSymPoly 𝑅 ) )
118 117 6 eqtr4di ( 𝑗 = 𝐼 → ( 𝑗 eSymPoly 𝑅 ) = 𝐸 )
119 118 fveq1d ( 𝑗 = 𝐼 → ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) = ( 𝐸𝑘 ) )
120 116 119 fveq12d ( 𝑗 = 𝐼 → ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( 𝑄 ‘ ( 𝐸𝑘 ) ) )
121 120 fveq1d ( 𝑗 = 𝐼 → ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑧 ) )
122 121 oveq2d ( 𝑗 = 𝐼 → ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑧 ) ) )
123 114 122 eqeq12d ( 𝑗 = 𝐼 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( 𝐻𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑧 ) ) ) )
124 109 123 raleqbidv ( 𝑗 = 𝐼 → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... 𝐻 ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( 𝐻𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑧 ) ) ) )
125 106 124 raleqbidv ( 𝑗 = 𝐼 → ( ∀ 𝑧 ∈ ( 𝐵m 𝑗 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑗 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑗 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑗 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑗 eval 𝑅 ) ‘ ( ( 𝑗 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝐵m 𝐼 ) ∀ 𝑘 ∈ ( 0 ... 𝐻 ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( 𝐻𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑧 ) ) ) )
126 15 idomringd ( 𝜑𝑅 ∈ Ring )
127 2 8 126 ringidcld ( 𝜑1𝐵 )
128 2 9 8 126 127 ringlidmd ( 𝜑 → ( 1 · 1 ) = 1 )
129 126 ringgrpd ( 𝜑𝑅 ∈ Grp )
130 2 7 129 127 grpinvcld ( 𝜑 → ( 𝑁1 ) ∈ 𝐵 )
131 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
132 131 2 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
133 131 8 ringidval 1 = ( 0g ‘ ( mulGrp ‘ 𝑅 ) )
134 132 133 12 mulg0 ( ( 𝑁1 ) ∈ 𝐵 → ( 0 ( 𝑁1 ) ) = 1 )
135 130 134 syl ( 𝜑 → ( 0 ( 𝑁1 ) ) = 1 )
136 eqid ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 )
137 136 8 zrh1 ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = 1 )
138 126 137 syl ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = 1 )
139 138 sneqd ( 𝜑 → { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } = { 1 } )
140 139 xpeq2d ( 𝜑 → ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) = ( { ∅ } × { 1 } ) )
141 0ex ∅ ∈ V
142 141 a1i ( 𝜑 → ∅ ∈ V )
143 8 fvexi 1 ∈ V
144 143 a1i ( 𝜑1 ∈ V )
145 xpsng ( ( ∅ ∈ V ∧ 1 ∈ V ) → ( { ∅ } × { 1 } ) = { ⟨ ∅ , 1 ⟩ } )
146 142 144 145 syl2anc ( 𝜑 → ( { ∅ } × { 1 } ) = { ⟨ ∅ , 1 ⟩ } )
147 0xp ( ∅ × { 0 } ) = ∅
148 147 eqcomi ∅ = ( ∅ × { 0 } )
149 148 eqeq2i ( 𝑓 = ∅ ↔ 𝑓 = ( ∅ × { 0 } ) )
150 149 biimpi ( 𝑓 = ∅ → 𝑓 = ( ∅ × { 0 } ) )
151 150 adantl ( ( 𝜑𝑓 = ∅ ) → 𝑓 = ( ∅ × { 0 } ) )
152 151 iftrued ( ( 𝜑𝑓 = ∅ ) → if ( 𝑓 = ( ∅ × { 0 } ) , 1 , ( 0g𝑅 ) ) = 1 )
153 152 142 144 fmptsnd ( 𝜑 → { ⟨ ∅ , 1 ⟩ } = ( 𝑓 ∈ { ∅ } ↦ if ( 𝑓 = ( ∅ × { 0 } ) , 1 , ( 0g𝑅 ) ) ) )
154 140 146 153 3eqtrd ( 𝜑 → ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) = ( 𝑓 ∈ { ∅ } ↦ if ( 𝑓 = ( ∅ × { 0 } ) , 1 , ( 0g𝑅 ) ) ) )
155 elsni ( ∈ { ∅ } → = ∅ )
156 nn0ex 0 ∈ V
157 mapdm0 ( ℕ0 ∈ V → ( ℕ0m ∅ ) = { ∅ } )
158 156 157 ax-mp ( ℕ0m ∅ ) = { ∅ }
159 155 158 eleq2s ( ∈ ( ℕ0m ∅ ) → = ∅ )
160 159 cnveqd ( ∈ ( ℕ0m ∅ ) → = ∅ )
161 160 imaeq1d ( ∈ ( ℕ0m ∅ ) → ( “ ℕ ) = ( ∅ “ ℕ ) )
162 cnv0 ∅ = ∅
163 162 imaeq1i ( ∅ “ ℕ ) = ( ∅ “ ℕ )
164 0ima ( ∅ “ ℕ ) = ∅
165 163 164 eqtri ( ∅ “ ℕ ) = ∅
166 161 165 eqtrdi ( ∈ ( ℕ0m ∅ ) → ( “ ℕ ) = ∅ )
167 0fi ∅ ∈ Fin
168 166 167 eqeltrdi ( ∈ ( ℕ0m ∅ ) → ( “ ℕ ) ∈ Fin )
169 168 rabeqc { ∈ ( ℕ0m ∅ ) ∣ ( “ ℕ ) ∈ Fin } = ( ℕ0m ∅ )
170 169 158 eqtr2i { ∅ } = { ∈ ( ℕ0m ∅ ) ∣ ( “ ℕ ) ∈ Fin }
171 eqid { ∈ ( ℕ0m ∅ ) ∣ finSupp 0 } = { ∈ ( ℕ0m ∅ ) ∣ finSupp 0 }
172 171 psrbasfsupp { ∈ ( ℕ0m ∅ ) ∣ finSupp 0 } = { ∈ ( ℕ0m ∅ ) ∣ ( “ ℕ ) ∈ Fin }
173 170 172 eqtr4i { ∅ } = { ∈ ( ℕ0m ∅ ) ∣ finSupp 0 }
174 0nn0 0 ∈ ℕ0
175 174 a1i ( 𝜑 → 0 ∈ ℕ0 )
176 173 142 15 175 esplyfval ( 𝜑 → ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ∅ } ) ‘ ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) ) )
177 fveqeq2 ( 𝑐 = ∅ → ( ( ♯ ‘ 𝑐 ) = 0 ↔ ( ♯ ‘ ∅ ) = 0 ) )
178 0elpw ∅ ∈ 𝒫 ∅
179 178 a1i ( 𝜑 → ∅ ∈ 𝒫 ∅ )
180 46 a1i ( 𝜑 → ( ♯ ‘ ∅ ) = 0 )
181 hasheq0 ( 𝑐 ∈ 𝒫 ∅ → ( ( ♯ ‘ 𝑐 ) = 0 ↔ 𝑐 = ∅ ) )
182 181 biimpa ( ( 𝑐 ∈ 𝒫 ∅ ∧ ( ♯ ‘ 𝑐 ) = 0 ) → 𝑐 = ∅ )
183 182 adantll ( ( ( 𝜑𝑐 ∈ 𝒫 ∅ ) ∧ ( ♯ ‘ 𝑐 ) = 0 ) → 𝑐 = ∅ )
184 177 179 180 183 rabeqsnd ( 𝜑 → { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } = { ∅ } )
185 184 imaeq2d ( 𝜑 → ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) = ( ( 𝟭 ‘ ∅ ) “ { ∅ } ) )
186 pw0 𝒫 ∅ = { ∅ }
187 186 a1i ( 𝜑 → 𝒫 ∅ = { ∅ } )
188 indf1o ( ∅ ∈ V → ( 𝟭 ‘ ∅ ) : 𝒫 ∅ –1-1-onto→ ( { 0 , 1 } ↑m ∅ ) )
189 f1of ( ( 𝟭 ‘ ∅ ) : 𝒫 ∅ –1-1-onto→ ( { 0 , 1 } ↑m ∅ ) → ( 𝟭 ‘ ∅ ) : 𝒫 ∅ ⟶ ( { 0 , 1 } ↑m ∅ ) )
190 142 188 189 3syl ( 𝜑 → ( 𝟭 ‘ ∅ ) : 𝒫 ∅ ⟶ ( { 0 , 1 } ↑m ∅ ) )
191 187 190 feq2dd ( 𝜑 → ( 𝟭 ‘ ∅ ) : { ∅ } ⟶ ( { 0 , 1 } ↑m ∅ ) )
192 191 ffnd ( 𝜑 → ( 𝟭 ‘ ∅ ) Fn { ∅ } )
193 141 snid ∅ ∈ { ∅ }
194 193 a1i ( 𝜑 → ∅ ∈ { ∅ } )
195 192 194 fnimasnd ( 𝜑 → ( ( 𝟭 ‘ ∅ ) “ { ∅ } ) = { ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) } )
196 ssidd ( 𝜑 → ∅ ⊆ ∅ )
197 indf ( ( ∅ ∈ V ∧ ∅ ⊆ ∅ ) → ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) : ∅ ⟶ { 0 , 1 } )
198 142 196 197 syl2anc ( 𝜑 → ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) : ∅ ⟶ { 0 , 1 } )
199 f0bi ( ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) : ∅ ⟶ { 0 , 1 } ↔ ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) = ∅ )
200 198 199 sylib ( 𝜑 → ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) = ∅ )
201 200 sneqd ( 𝜑 → { ( ( 𝟭 ‘ ∅ ) ‘ ∅ ) } = { ∅ } )
202 185 195 201 3eqtrd ( 𝜑 → ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) = { ∅ } )
203 202 fveq2d ( 𝜑 → ( ( 𝟭 ‘ { ∅ } ) ‘ ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) = ( ( 𝟭 ‘ { ∅ } ) ‘ { ∅ } ) )
204 p0ex { ∅ } ∈ V
205 indconst1 ( { ∅ } ∈ V → ( ( 𝟭 ‘ { ∅ } ) ‘ { ∅ } ) = ( { ∅ } × { 1 } ) )
206 204 205 ax-mp ( ( 𝟭 ‘ { ∅ } ) ‘ { ∅ } ) = ( { ∅ } × { 1 } )
207 203 206 eqtrdi ( 𝜑 → ( ( 𝟭 ‘ { ∅ } ) ‘ ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) = ( { ∅ } × { 1 } ) )
208 207 coeq2d ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ∅ } ) ‘ ( ( 𝟭 ‘ ∅ ) “ { 𝑐 ∈ 𝒫 ∅ ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( { ∅ } × { 1 } ) ) )
209 136 zrhrhm ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) )
210 zringbas ℤ = ( Base ‘ ℤring )
211 210 2 rhmf ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ 𝐵 )
212 126 209 211 3syl ( 𝜑 → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ 𝐵 )
213 212 ffnd ( 𝜑 → ( ℤRHom ‘ 𝑅 ) Fn ℤ )
214 1zzd ( 𝜑 → 1 ∈ ℤ )
215 fcoconst ( ( ( ℤRHom ‘ 𝑅 ) Fn ℤ ∧ 1 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( { ∅ } × { 1 } ) ) = ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) )
216 213 214 215 syl2anc ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( { ∅ } × { 1 } ) ) = ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) )
217 176 208 216 3eqtrd ( 𝜑 → ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) = ( { ∅ } × { ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) } ) )
218 eqid ( ∅ mPoly 𝑅 ) = ( ∅ mPoly 𝑅 )
219 eqid ( 0g𝑅 ) = ( 0g𝑅 )
220 eqid ( algSc ‘ ( ∅ mPoly 𝑅 ) ) = ( algSc ‘ ( ∅ mPoly 𝑅 ) )
221 218 170 219 2 220 142 126 127 mplascl ( 𝜑 → ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) = ( 𝑓 ∈ { ∅ } ↦ if ( 𝑓 = ( ∅ × { 0 } ) , 1 , ( 0g𝑅 ) ) ) )
222 154 217 221 3eqtr4d ( 𝜑 → ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) = ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) )
223 222 fveq2d ( 𝜑 → ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) = ( ( ∅ eval 𝑅 ) ‘ ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) ) )
224 223 fveq1d ( 𝜑 → ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) = ( ( ( ∅ eval 𝑅 ) ‘ ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) ) ‘ ∅ ) )
225 eqid ( ∅ eval 𝑅 ) = ( ∅ eval 𝑅 )
226 193 158 eleqtrri ∅ ∈ ( ℕ0m ∅ )
227 226 a1i ( 𝜑 → ∅ ∈ ( ℕ0m ∅ ) )
228 15 idomcringd ( 𝜑𝑅 ∈ CRing )
229 225 218 2 220 227 228 127 evlsca ( 𝜑 → ( ( ∅ eval 𝑅 ) ‘ ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) ) = ( ( 𝐵m ∅ ) × { 1 } ) )
230 229 fveq1d ( 𝜑 → ( ( ( ∅ eval 𝑅 ) ‘ ( ( algSc ‘ ( ∅ mPoly 𝑅 ) ) ‘ 1 ) ) ‘ ∅ ) = ( ( ( 𝐵m ∅ ) × { 1 } ) ‘ ∅ ) )
231 193 42 eleqtrri ∅ ∈ ( 𝐵m ∅ )
232 143 fvconst2 ( ∅ ∈ ( 𝐵m ∅ ) → ( ( ( 𝐵m ∅ ) × { 1 } ) ‘ ∅ ) = 1 )
233 231 232 mp1i ( 𝜑 → ( ( ( 𝐵m ∅ ) × { 1 } ) ‘ ∅ ) = 1 )
234 224 230 233 3eqtrd ( 𝜑 → ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) = 1 )
235 135 234 oveq12d ( 𝜑 → ( ( 0 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) = ( 1 · 1 ) )
236 iftrue ( 𝑙 = 0 → if ( 𝑙 = 0 , 1 , ( 0g𝑅 ) ) = 1 )
237 eqid ( 1r𝑊 ) = ( 1r𝑊 )
238 4 237 ringidval ( 1r𝑊 ) = ( 0g𝑀 )
239 238 eqcomi ( 0g𝑀 ) = ( 1r𝑊 )
240 1 239 219 8 coe1id ( 𝑅 ∈ Ring → ( coe1 ‘ ( 0g𝑀 ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , 1 , ( 0g𝑅 ) ) ) )
241 126 240 syl ( 𝜑 → ( coe1 ‘ ( 0g𝑀 ) ) = ( 𝑙 ∈ ℕ0 ↦ if ( 𝑙 = 0 , 1 , ( 0g𝑅 ) ) ) )
242 236 241 175 144 fvmptd4 ( 𝜑 → ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ 0 ) = 1 )
243 128 235 242 3eqtr4rd ( 𝜑 → ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ 0 ) = ( ( 0 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) )
244 fveq2 ( 𝑧 = ∅ → ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) )
245 244 oveq2d ( 𝑧 = ∅ → ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) )
246 245 eqeq2d ( 𝑧 = ∅ → ( ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) ) )
247 246 ralbidv ( 𝑧 = ∅ → ( ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) ) )
248 c0ex 0 ∈ V
249 oveq2 ( 𝑘 = 0 → ( 0 − 𝑘 ) = ( 0 − 0 ) )
250 0m0e0 ( 0 − 0 ) = 0
251 249 250 eqtrdi ( 𝑘 = 0 → ( 0 − 𝑘 ) = 0 )
252 251 fveq2d ( 𝑘 = 0 → ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ 0 ) )
253 oveq1 ( 𝑘 = 0 → ( 𝑘 ( 𝑁1 ) ) = ( 0 ( 𝑁1 ) ) )
254 2fveq3 ( 𝑘 = 0 → ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) )
255 254 fveq1d ( 𝑘 = 0 → ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) = ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) )
256 253 255 oveq12d ( 𝑘 = 0 → ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) = ( ( 0 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) )
257 252 256 eqeq12d ( 𝑘 = 0 → ( ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) ↔ ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ 0 ) = ( ( 0 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) ) )
258 248 257 ralsn ( ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ ∅ ) ) ↔ ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ 0 ) = ( ( 0 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) )
259 247 258 bitrdi ( 𝑧 = ∅ → ( ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ 0 ) = ( ( 0 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) ) )
260 141 259 ralsn ( ∀ 𝑧 ∈ { ∅ } ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ 0 ) = ( ( 0 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 0 ) ) ‘ ∅ ) ) )
261 243 260 sylibr ( 𝜑 → ∀ 𝑧 ∈ { ∅ } ∀ 𝑘 ∈ { 0 } ( ( coe1 ‘ ( 0g𝑀 ) ) ‘ ( 0 − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ∅ eval 𝑅 ) ‘ ( ( ∅ eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
262 nfv 𝑧 ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) )
263 nfra1 𝑧𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) )
264 262 263 nfan 𝑧 ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
265 nfv 𝑘 ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) )
266 nfra2w 𝑘𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) )
267 265 266 nfan 𝑘 ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
268 nfv 𝑘 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) )
269 267 268 nfan 𝑘 ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) )
270 eqid ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) = ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 )
271 eqid ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) = ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 )
272 eqid ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) = ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) )
273 14 ad5antr ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝐼 ∈ Fin )
274 simp-5r ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑖𝐼 )
275 273 274 ssfid ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑖 ∈ Fin )
276 snfi { 𝑚 } ∈ Fin
277 276 a1i ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → { 𝑚 } ∈ Fin )
278 275 277 unfid ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( 𝑖 ∪ { 𝑚 } ) ∈ Fin )
279 15 ad5antr ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑅 ∈ IDomn )
280 40 a1i ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝐵 ∈ V )
281 simplr ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) )
282 278 280 281 elmaprd ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑧 : ( 𝑖 ∪ { 𝑚 } ) ⟶ 𝐵 )
283 2fveq3 ( 𝑛 = 𝑜 → ( 𝐴 ‘ ( 𝑧𝑛 ) ) = ( 𝐴 ‘ ( 𝑧𝑜 ) ) )
284 283 oveq2d ( 𝑛 = 𝑜 → ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) = ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑜 ) ) ) )
285 284 cbvmptv ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) = ( 𝑜 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑜 ) ) ) )
286 285 oveq2i ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑜 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑜 ) ) ) ) )
287 fznn0sub2 ( 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) → ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) )
288 287 adantl ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) )
289 ssun2 { 𝑚 } ⊆ ( 𝑖 ∪ { 𝑚 } )
290 vsnid 𝑚 ∈ { 𝑚 }
291 289 290 sselii 𝑚 ∈ ( 𝑖 ∪ { 𝑚 } )
292 291 a1i ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑚 ∈ ( 𝑖 ∪ { 𝑚 } ) )
293 eqid ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) = ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } )
294 fveq1 ( 𝑧 = 𝑦 → ( 𝑧𝑛 ) = ( 𝑦𝑛 ) )
295 294 fveq2d ( 𝑧 = 𝑦 → ( 𝐴 ‘ ( 𝑧𝑛 ) ) = ( 𝐴 ‘ ( 𝑦𝑛 ) ) )
296 295 oveq2d ( 𝑧 = 𝑦 → ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) = ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) )
297 296 mpteq2dv ( 𝑧 = 𝑦 → ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) = ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) )
298 297 oveq2d ( 𝑧 = 𝑦 → ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) )
299 298 fveq2d ( 𝑧 = 𝑦 → ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) )
300 299 fveq1d ( 𝑧 = 𝑦 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) )
301 fveq2 ( 𝑧 = 𝑦 → ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) = ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) )
302 301 oveq2d ( 𝑧 = 𝑦 → ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) )
303 300 302 eqeq12d ( 𝑧 = 𝑦 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ) )
304 303 ralbidv ( 𝑧 = 𝑦 → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ) )
305 304 cbvralvw ( ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) )
306 simpr ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → 𝑚 ∈ ( 𝐼𝑖 ) )
307 306 eldifbd ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ¬ 𝑚𝑖 )
308 disjsn ( ( 𝑖 ∩ { 𝑚 } ) = ∅ ↔ ¬ 𝑚𝑖 )
309 307 308 sylibr ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( 𝑖 ∩ { 𝑚 } ) = ∅ )
310 undif5 ( ( 𝑖 ∩ { 𝑚 } ) = ∅ → ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) = 𝑖 )
311 309 310 syl ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) = 𝑖 )
312 311 eqcomd ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → 𝑖 = ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) )
313 312 oveq2d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( 𝐵m 𝑖 ) = ( 𝐵m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) )
314 oveq2 ( 𝑘 = 𝑙 → ( ( ♯ ‘ 𝑖 ) − 𝑘 ) = ( ( ♯ ‘ 𝑖 ) − 𝑙 ) )
315 314 fveq2d ( 𝑘 = 𝑙 → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) )
316 oveq1 ( 𝑘 = 𝑙 → ( 𝑘 ( 𝑁1 ) ) = ( 𝑙 ( 𝑁1 ) ) )
317 2fveq3 ( 𝑘 = 𝑙 → ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) = ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) )
318 317 fveq1d ( 𝑘 = 𝑙 → ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) = ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) )
319 316 318 oveq12d ( 𝑘 = 𝑙 → ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) )
320 315 319 eqeq12d ( 𝑘 = 𝑙 → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) )
321 320 cbvralvw ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ↔ ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) )
322 312 fveq2d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ♯ ‘ 𝑖 ) = ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) )
323 322 oveq2d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( 0 ... ( ♯ ‘ 𝑖 ) ) = ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) )
324 2fveq3 ( 𝑛 = 𝑜 → ( 𝐴 ‘ ( 𝑦𝑛 ) ) = ( 𝐴 ‘ ( 𝑦𝑜 ) ) )
325 324 oveq2d ( 𝑛 = 𝑜 → ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) = ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) )
326 325 cbvmptv ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) = ( 𝑜𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) )
327 312 mpteq1d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( 𝑜𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) = ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) )
328 326 327 eqtrid ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) = ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) )
329 328 oveq2d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) = ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) )
330 329 fveq2d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) = ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) ) )
331 322 oveq1d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ( ♯ ‘ 𝑖 ) − 𝑙 ) = ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) )
332 330 331 fveq12d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) )
333 312 oveq1d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( 𝑖 eval 𝑅 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) )
334 312 oveq1d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( 𝑖 eSymPoly 𝑅 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) )
335 334 fveq1d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) = ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) )
336 333 335 fveq12d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) = ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) )
337 336 fveq1d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) = ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) )
338 337 oveq2d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) )
339 332 338 eqeq12d ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ↔ ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) )
340 323 339 raleqbidv ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ↔ ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) )
341 321 340 bitrid ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ↔ ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) )
342 313 341 raleqbidv ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ∀ 𝑦 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) )
343 305 342 bitrid ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ↔ ∀ 𝑦 ∈ ( 𝐵m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) ) )
344 343 biimpa ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) → ∀ 𝑦 ∈ ( 𝐵m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) )
345 344 ad2antrr ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ∀ 𝑦 ∈ ( 𝐵m ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ∀ 𝑙 ∈ ( 0 ... ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑦𝑜 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) − 𝑙 ) ) = ( ( 𝑙 ( 𝑁1 ) ) · ( ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑙 ) ) ‘ 𝑦 ) ) )
346 eqid ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eval 𝑅 )
347 eqid ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 ) = ( ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) eSymPoly 𝑅 )
348 eqid ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) = ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) )
349 difssd ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ⊆ ( 𝑖 ∪ { 𝑚 } ) )
350 278 349 ssfid ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ∈ Fin )
351 282 349 fssresd ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( 𝑧 ↾ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) : ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ⟶ 𝐵 )
352 eqid ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( ( 𝑧 ↾ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ‘ 𝑜 ) ) ) ) ) = ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( ( 𝑧 ↾ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ‘ 𝑜 ) ) ) ) )
353 eqid ( deg1𝑅 ) = ( deg1𝑅 )
354 1 2 3 4 346 347 7 8 9 10 11 12 348 350 279 351 352 353 vietadeg1 ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( deg1𝑅 ) ‘ ( 𝑀 Σg ( 𝑜 ∈ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( ( 𝑧 ↾ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) ‘ 𝑜 ) ) ) ) ) ) = ( ♯ ‘ ( ( 𝑖 ∪ { 𝑚 } ) ∖ { 𝑚 } ) ) )
355 1 2 3 4 270 271 7 8 9 10 11 12 272 278 279 282 286 288 292 293 345 354 vietalem ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) ‘ 𝑧 ) ) )
356 14 ad2antrr ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → 𝐼 ∈ Fin )
357 simplr ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → 𝑖𝐼 )
358 356 357 ssfid ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → 𝑖 ∈ Fin )
359 276 a1i ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → { 𝑚 } ∈ Fin )
360 358 359 unfid ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( 𝑖 ∪ { 𝑚 } ) ∈ Fin )
361 360 adantr ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( 𝑖 ∪ { 𝑚 } ) ∈ Fin )
362 hashcl ( ( 𝑖 ∪ { 𝑚 } ) ∈ Fin → ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ∈ ℕ0 )
363 361 362 syl ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ∈ ℕ0 )
364 363 nn0cnd ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ∈ ℂ )
365 elfznn0 ( 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) → 𝑘 ∈ ℕ0 )
366 365 adantl ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑘 ∈ ℕ0 )
367 366 nn0cnd ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → 𝑘 ∈ ℂ )
368 364 367 nncand ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = 𝑘 )
369 368 oveq1d ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ( 𝑁1 ) ) = ( 𝑘 ( 𝑁1 ) ) )
370 368 fveq2d ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) = ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) )
371 370 fveq2d ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) = ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) )
372 371 fveq1d ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) ‘ 𝑧 ) = ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) )
373 369 372 oveq12d ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
374 373 ad4ant14 ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) ) ) ‘ 𝑧 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
375 355 374 eqtrd ( ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) ∧ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ) → ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
376 269 375 ralrimia ( ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) ∧ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ) → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
377 264 376 ralrimia ( ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) ∧ ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) → ∀ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) )
378 377 ex ( ( ( 𝜑𝑖𝐼 ) ∧ 𝑚 ∈ ( 𝐼𝑖 ) ) → ( ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) → ∀ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
379 378 anasss ( ( 𝜑 ∧ ( 𝑖𝐼𝑚 ∈ ( 𝐼𝑖 ) ) ) → ( ∀ 𝑧 ∈ ( 𝐵m 𝑖 ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝑖 ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝑖 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ 𝑖 ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( 𝑖 eval 𝑅 ) ‘ ( ( 𝑖 eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) → ∀ 𝑧 ∈ ( 𝐵m ( 𝑖 ∪ { 𝑚 } ) ) ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛 ∈ ( 𝑖 ∪ { 𝑚 } ) ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( ( ♯ ‘ ( 𝑖 ∪ { 𝑚 } ) ) − 𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( ( ( 𝑖 ∪ { 𝑚 } ) eval 𝑅 ) ‘ ( ( ( 𝑖 ∪ { 𝑚 } ) eSymPoly 𝑅 ) ‘ 𝑘 ) ) ‘ 𝑧 ) ) ) )
380 71 88 105 125 261 379 14 findcard2d ( 𝜑 → ∀ 𝑧 ∈ ( 𝐵m 𝐼 ) ∀ 𝑘 ∈ ( 0 ... 𝐻 ) ( ( coe1 ‘ ( 𝑀 Σg ( 𝑛𝐼 ↦ ( 𝑋 ( 𝐴 ‘ ( 𝑧𝑛 ) ) ) ) ) ) ‘ ( 𝐻𝑘 ) ) = ( ( 𝑘 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝑘 ) ) ‘ 𝑧 ) ) )
381 40 a1i ( 𝜑𝐵 ∈ V )
382 381 14 16 elmapdd ( 𝜑𝑍 ∈ ( 𝐵m 𝐼 ) )
383 31 38 380 382 18 rspc2dv ( 𝜑 → ( 𝐶 ‘ ( 𝐻𝐾 ) ) = ( ( 𝐾 ( 𝑁1 ) ) · ( ( 𝑄 ‘ ( 𝐸𝐾 ) ) ‘ 𝑍 ) ) )