| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem22.s |
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } |
| 3 |
|
poimirlem22.1 |
|- ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 4 |
|
poimirlem22.2 |
|- ( ph -> T e. S ) |
| 5 |
|
poimirlem15.3 |
|- ( ph -> ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) ) |
| 6 |
|
elrabi |
|- ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 7 |
6 2
|
eleq2s |
|- ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 8 |
4 7
|
syl |
|- ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 9 |
|
xp1st |
|- ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 10 |
|
xp1st |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 11 |
8 9 10
|
3syl |
|- ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 12 |
|
xp2nd |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 13 |
8 9 12
|
3syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 14 |
|
fvex |
|- ( 2nd ` ( 1st ` T ) ) e. _V |
| 15 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 16 |
14 15
|
elab |
|- ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 17 |
13 16
|
sylib |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 18 |
|
elfznn |
|- ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) e. NN ) |
| 19 |
5 18
|
syl |
|- ( ph -> ( 2nd ` T ) e. NN ) |
| 20 |
19
|
nnred |
|- ( ph -> ( 2nd ` T ) e. RR ) |
| 21 |
20
|
ltp1d |
|- ( ph -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) ) |
| 22 |
20 21
|
ltned |
|- ( ph -> ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) ) |
| 23 |
22
|
necomd |
|- ( ph -> ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) |
| 24 |
|
fvex |
|- ( 2nd ` T ) e. _V |
| 25 |
|
ovex |
|- ( ( 2nd ` T ) + 1 ) e. _V |
| 26 |
|
f1oprg |
|- ( ( ( ( 2nd ` T ) e. _V /\ ( ( 2nd ` T ) + 1 ) e. _V ) /\ ( ( ( 2nd ` T ) + 1 ) e. _V /\ ( 2nd ` T ) e. _V ) ) -> ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) ) |
| 27 |
24 25 25 24 26
|
mp4an |
|- ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
| 28 |
22 23 27
|
syl2anc |
|- ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
| 29 |
|
prcom |
|- { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } |
| 30 |
|
f1oeq3 |
|- ( { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 31 |
29 30
|
ax-mp |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 32 |
28 31
|
sylib |
|- ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 33 |
|
f1oi |
|- ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) : ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -1-1-onto-> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 34 |
|
disjdif |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = (/) |
| 35 |
|
f1oun |
|- ( ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) : ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -1-1-onto-> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) /\ ( ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = (/) /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = (/) ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 36 |
34 34 35
|
mpanr12 |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) : ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -1-1-onto-> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 37 |
32 33 36
|
sylancl |
|- ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 38 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 39 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 40 |
38 39
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 41 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 42 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 43 |
41 42
|
syl |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 44 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 45 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 46 |
43 44 45
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 47 |
40 46
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 48 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
| 49 |
47 48
|
syl |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
| 50 |
49 5
|
sseldd |
|- ( ph -> ( 2nd ` T ) e. ( 1 ... N ) ) |
| 51 |
19
|
peano2nnd |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. NN ) |
| 52 |
43
|
zred |
|- ( ph -> ( N - 1 ) e. RR ) |
| 53 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 54 |
|
elfzle2 |
|- ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) <_ ( N - 1 ) ) |
| 55 |
5 54
|
syl |
|- ( ph -> ( 2nd ` T ) <_ ( N - 1 ) ) |
| 56 |
53
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
| 57 |
20 52 53 55 56
|
lelttrd |
|- ( ph -> ( 2nd ` T ) < N ) |
| 58 |
19
|
nnzd |
|- ( ph -> ( 2nd ` T ) e. ZZ ) |
| 59 |
|
zltp1le |
|- ( ( ( 2nd ` T ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` T ) < N <-> ( ( 2nd ` T ) + 1 ) <_ N ) ) |
| 60 |
58 41 59
|
syl2anc |
|- ( ph -> ( ( 2nd ` T ) < N <-> ( ( 2nd ` T ) + 1 ) <_ N ) ) |
| 61 |
57 60
|
mpbid |
|- ( ph -> ( ( 2nd ` T ) + 1 ) <_ N ) |
| 62 |
|
fznn |
|- ( N e. ZZ -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
| 63 |
41 62
|
syl |
|- ( ph -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
| 64 |
51 61 63
|
mpbir2and |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) ) |
| 65 |
|
prssi |
|- ( ( ( 2nd ` T ) e. ( 1 ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) ) |
| 66 |
50 64 65
|
syl2anc |
|- ( ph -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) ) |
| 67 |
|
undif |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) ) |
| 68 |
66 67
|
sylib |
|- ( ph -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) ) |
| 69 |
|
f1oeq23 |
|- ( ( ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) <-> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 70 |
68 68 69
|
syl2anc |
|- ( ph -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) <-> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 71 |
37 70
|
mpbid |
|- ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 72 |
|
f1oco |
|- ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 73 |
17 71 72
|
syl2anc |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 74 |
|
prex |
|- { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } e. _V |
| 75 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 76 |
|
difexg |
|- ( ( 1 ... N ) e. _V -> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. _V ) |
| 77 |
|
resiexg |
|- ( ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. _V -> ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) e. _V ) |
| 78 |
75 76 77
|
mp2b |
|- ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) e. _V |
| 79 |
74 78
|
unex |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) e. _V |
| 80 |
14 79
|
coex |
|- ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. _V |
| 81 |
|
f1oeq1 |
|- ( f = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 82 |
80 81
|
elab |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 83 |
73 82
|
sylibr |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 84 |
|
opelxpi |
|- ( ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) /\ ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 85 |
11 83 84
|
syl2anc |
|- ( ph -> <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 86 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
| 87 |
49 86
|
sstrdi |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 88 |
87 5
|
sseldd |
|- ( ph -> ( 2nd ` T ) e. ( 0 ... N ) ) |
| 89 |
|
opelxpi |
|- ( ( <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( 2nd ` T ) e. ( 0 ... N ) ) -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 90 |
85 88 89
|
syl2anc |
|- ( ph -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 91 |
|
fveq2 |
|- ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) |
| 92 |
91
|
breq2d |
|- ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) |
| 93 |
92
|
ifbid |
|- ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) |
| 94 |
93
|
csbeq1d |
|- ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 95 |
|
2fveq3 |
|- ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) |
| 96 |
|
2fveq3 |
|- ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) |
| 97 |
96
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) |
| 98 |
97
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 99 |
96
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) |
| 100 |
99
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 101 |
98 100
|
uneq12d |
|- ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 102 |
95 101
|
oveq12d |
|- ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 103 |
102
|
csbeq2dv |
|- ( t = T -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 104 |
94 103
|
eqtrd |
|- ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 105 |
104
|
mpteq2dv |
|- ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 106 |
105
|
eqeq2d |
|- ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 107 |
106 2
|
elrab2 |
|- ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 108 |
107
|
simprbi |
|- ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 109 |
4 108
|
syl |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 110 |
|
imaco |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) ) |
| 111 |
|
f1ofn |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 112 |
28 111
|
syl |
|- ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 113 |
112
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 114 |
|
incom |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( 1 ... y ) ) = ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 115 |
|
elfznn0 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 ) |
| 116 |
115
|
nn0red |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) |
| 117 |
|
ltnle |
|- ( ( y e. RR /\ ( 2nd ` T ) e. RR ) -> ( y < ( 2nd ` T ) <-> -. ( 2nd ` T ) <_ y ) ) |
| 118 |
116 20 117
|
syl2anr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( 2nd ` T ) <-> -. ( 2nd ` T ) <_ y ) ) |
| 119 |
118
|
biimpa |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( 2nd ` T ) <_ y ) |
| 120 |
|
elfzle2 |
|- ( ( 2nd ` T ) e. ( 1 ... y ) -> ( 2nd ` T ) <_ y ) |
| 121 |
119 120
|
nsyl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( 2nd ` T ) e. ( 1 ... y ) ) |
| 122 |
|
disjsn |
|- ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) = (/) <-> -. ( 2nd ` T ) e. ( 1 ... y ) ) |
| 123 |
121 122
|
sylibr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) = (/) ) |
| 124 |
116
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y e. RR ) |
| 125 |
20
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) e. RR ) |
| 126 |
51
|
nnred |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. RR ) |
| 127 |
126
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) e. RR ) |
| 128 |
|
simpr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y < ( 2nd ` T ) ) |
| 129 |
21
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) ) |
| 130 |
124 125 127 128 129
|
lttrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y < ( ( 2nd ` T ) + 1 ) ) |
| 131 |
|
ltnle |
|- ( ( y e. RR /\ ( ( 2nd ` T ) + 1 ) e. RR ) -> ( y < ( ( 2nd ` T ) + 1 ) <-> -. ( ( 2nd ` T ) + 1 ) <_ y ) ) |
| 132 |
116 126 131
|
syl2anr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( ( 2nd ` T ) + 1 ) <-> -. ( ( 2nd ` T ) + 1 ) <_ y ) ) |
| 133 |
132
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( y < ( ( 2nd ` T ) + 1 ) <-> -. ( ( 2nd ` T ) + 1 ) <_ y ) ) |
| 134 |
130 133
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( ( 2nd ` T ) + 1 ) <_ y ) |
| 135 |
|
elfzle2 |
|- ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... y ) -> ( ( 2nd ` T ) + 1 ) <_ y ) |
| 136 |
134 135
|
nsyl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( ( 2nd ` T ) + 1 ) e. ( 1 ... y ) ) |
| 137 |
|
disjsn |
|- ( ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) <-> -. ( ( 2nd ` T ) + 1 ) e. ( 1 ... y ) ) |
| 138 |
136 137
|
sylibr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
| 139 |
123 138
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) u. ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( (/) u. (/) ) ) |
| 140 |
|
df-pr |
|- { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } = ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) |
| 141 |
140
|
ineq2i |
|- ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 1 ... y ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) |
| 142 |
|
indi |
|- ( ( 1 ... y ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) u. ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) |
| 143 |
141 142
|
eqtr2i |
|- ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) u. ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 144 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
| 145 |
139 143 144
|
3eqtr3g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
| 146 |
114 145
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( 1 ... y ) ) = (/) ) |
| 147 |
|
fnimadisj |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( 1 ... y ) ) = (/) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) = (/) ) |
| 148 |
113 146 147
|
syl2anc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) = (/) ) |
| 149 |
40
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 150 |
|
elfzuz3 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) ) |
| 151 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) |
| 152 |
150 151
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) |
| 153 |
152
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) |
| 154 |
149 153
|
eqeltrrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` y ) ) |
| 155 |
|
fzss2 |
|- ( N e. ( ZZ>= ` y ) -> ( 1 ... y ) C_ ( 1 ... N ) ) |
| 156 |
|
reldisj |
|- ( ( 1 ... y ) C_ ( 1 ... N ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 157 |
154 155 156
|
3syl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 158 |
157
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 159 |
145 158
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 160 |
|
resiima |
|- ( ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) = ( 1 ... y ) ) |
| 161 |
159 160
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) = ( 1 ... y ) ) |
| 162 |
148 161
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) ) = ( (/) u. ( 1 ... y ) ) ) |
| 163 |
|
imaundir |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) ) |
| 164 |
|
uncom |
|- ( (/) u. ( 1 ... y ) ) = ( ( 1 ... y ) u. (/) ) |
| 165 |
|
un0 |
|- ( ( 1 ... y ) u. (/) ) = ( 1 ... y ) |
| 166 |
164 165
|
eqtr2i |
|- ( 1 ... y ) = ( (/) u. ( 1 ... y ) ) |
| 167 |
162 163 166
|
3eqtr4g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) = ( 1 ... y ) ) |
| 168 |
167
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) |
| 169 |
110 168
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) |
| 170 |
169
|
xpeq1d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) ) |
| 171 |
|
imaco |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) ) |
| 172 |
|
imaundir |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) ) |
| 173 |
|
imassrn |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } |
| 174 |
173
|
a1i |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
| 175 |
|
fnima |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
| 176 |
28 111 175
|
3syl |
|- ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
| 177 |
176
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
| 178 |
|
elfzelz |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ ) |
| 179 |
|
zltp1le |
|- ( ( y e. ZZ /\ ( 2nd ` T ) e. ZZ ) -> ( y < ( 2nd ` T ) <-> ( y + 1 ) <_ ( 2nd ` T ) ) ) |
| 180 |
178 58 179
|
syl2anr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( 2nd ` T ) <-> ( y + 1 ) <_ ( 2nd ` T ) ) ) |
| 181 |
180
|
biimpa |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( y + 1 ) <_ ( 2nd ` T ) ) |
| 182 |
20 53 57
|
ltled |
|- ( ph -> ( 2nd ` T ) <_ N ) |
| 183 |
182
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) <_ N ) |
| 184 |
58
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) e. ZZ ) |
| 185 |
|
nn0p1nn |
|- ( y e. NN0 -> ( y + 1 ) e. NN ) |
| 186 |
115 185
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. NN ) |
| 187 |
186
|
nnzd |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ZZ ) |
| 188 |
187
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ZZ ) |
| 189 |
41
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ZZ ) |
| 190 |
|
elfz |
|- ( ( ( 2nd ` T ) e. ZZ /\ ( y + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( 2nd ` T ) /\ ( 2nd ` T ) <_ N ) ) ) |
| 191 |
184 188 189 190
|
syl3anc |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( 2nd ` T ) /\ ( 2nd ` T ) <_ N ) ) ) |
| 192 |
191
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( 2nd ` T ) /\ ( 2nd ` T ) <_ N ) ) ) |
| 193 |
181 183 192
|
mpbir2and |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) e. ( ( y + 1 ) ... N ) ) |
| 194 |
|
1red |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> 1 e. RR ) |
| 195 |
|
ltle |
|- ( ( y e. RR /\ ( 2nd ` T ) e. RR ) -> ( y < ( 2nd ` T ) -> y <_ ( 2nd ` T ) ) ) |
| 196 |
116 20 195
|
syl2anr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( 2nd ` T ) -> y <_ ( 2nd ` T ) ) ) |
| 197 |
196
|
imp |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y <_ ( 2nd ` T ) ) |
| 198 |
124 125 194 197
|
leadd1dd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) |
| 199 |
61
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) <_ N ) |
| 200 |
58
|
peano2zd |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. ZZ ) |
| 201 |
200
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) + 1 ) e. ZZ ) |
| 202 |
|
elfz |
|- ( ( ( ( 2nd ` T ) + 1 ) e. ZZ /\ ( y + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
| 203 |
201 188 189 202
|
syl3anc |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
| 204 |
203
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
| 205 |
198 199 204
|
mpbir2and |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) ) |
| 206 |
|
prssi |
|- ( ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) ) |
| 207 |
193 205 206
|
syl2anc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) ) |
| 208 |
|
imass2 |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) ) |
| 209 |
207 208
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) ) |
| 210 |
177 209
|
eqsstrrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) ) |
| 211 |
174 210
|
eqssd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
| 212 |
|
f1ofo |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
| 213 |
|
forn |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
| 214 |
28 212 213
|
3syl |
|- ( ph -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
| 215 |
214 29
|
eqtrdi |
|- ( ph -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 216 |
215
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 217 |
211 216
|
eqtrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 218 |
|
undif |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( y + 1 ) ... N ) ) |
| 219 |
207 218
|
sylib |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( y + 1 ) ... N ) ) |
| 220 |
219
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) ) |
| 221 |
|
fnresi |
|- ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) Fn ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 222 |
|
disjdifr |
|- ( ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) |
| 223 |
|
fnimadisj |
|- ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) Fn ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) /\ ( ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
| 224 |
221 222 223
|
mp2an |
|- ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) |
| 225 |
224
|
a1i |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
| 226 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 227 |
186 226
|
eleqtrdi |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) |
| 228 |
|
fzss1 |
|- ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 229 |
227 228
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 230 |
229
|
ssdifd |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 231 |
|
resiima |
|- ( ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 232 |
230 231
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 233 |
232
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 234 |
225 233
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( (/) u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 235 |
|
imaundi |
|- ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 236 |
|
uncom |
|- ( (/) u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) |
| 237 |
|
un0 |
|- ( ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 238 |
236 237
|
eqtr2i |
|- ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( (/) u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 239 |
234 235 238
|
3eqtr4g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 240 |
220 239
|
eqtr3d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 241 |
217 240
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 242 |
172 241
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 243 |
242 219
|
eqtrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( y + 1 ) ... N ) ) |
| 244 |
243
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) |
| 245 |
171 244
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) |
| 246 |
245
|
xpeq1d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) |
| 247 |
170 246
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 248 |
247
|
oveq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 249 |
|
iftrue |
|- ( y < ( 2nd ` T ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = y ) |
| 250 |
249
|
csbeq1d |
|- ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 251 |
|
vex |
|- y e. _V |
| 252 |
|
oveq2 |
|- ( j = y -> ( 1 ... j ) = ( 1 ... y ) ) |
| 253 |
252
|
imaeq2d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) ) |
| 254 |
253
|
xpeq1d |
|- ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) ) |
| 255 |
|
oveq1 |
|- ( j = y -> ( j + 1 ) = ( y + 1 ) ) |
| 256 |
255
|
oveq1d |
|- ( j = y -> ( ( j + 1 ) ... N ) = ( ( y + 1 ) ... N ) ) |
| 257 |
256
|
imaeq2d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) ) |
| 258 |
257
|
xpeq1d |
|- ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) |
| 259 |
254 258
|
uneq12d |
|- ( j = y -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 260 |
259
|
oveq2d |
|- ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 261 |
251 260
|
csbie |
|- [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 262 |
250 261
|
eqtrdi |
|- ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 263 |
262
|
adantl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 264 |
249
|
csbeq1d |
|- ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 265 |
252
|
imaeq2d |
|- ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) |
| 266 |
265
|
xpeq1d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) ) |
| 267 |
256
|
imaeq2d |
|- ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) |
| 268 |
267
|
xpeq1d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) |
| 269 |
266 268
|
uneq12d |
|- ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 270 |
269
|
oveq2d |
|- ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 271 |
251 270
|
csbie |
|- [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 272 |
264 271
|
eqtrdi |
|- ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 273 |
272
|
adantl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 274 |
248 263 273
|
3eqtr4d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 275 |
|
lenlt |
|- ( ( ( 2nd ` T ) e. RR /\ y e. RR ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) |
| 276 |
20 116 275
|
syl2an |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) |
| 277 |
276
|
biimpar |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> ( 2nd ` T ) <_ y ) |
| 278 |
|
imaco |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 279 |
|
imaundir |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 280 |
|
imassrn |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } |
| 281 |
280
|
a1i |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
| 282 |
176
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
| 283 |
19
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) e. NN ) |
| 284 |
20
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) e. RR ) |
| 285 |
116
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> y e. RR ) |
| 286 |
186
|
nnred |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. RR ) |
| 287 |
286
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( y + 1 ) e. RR ) |
| 288 |
|
simpr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) <_ y ) |
| 289 |
116
|
lep1d |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( y + 1 ) ) |
| 290 |
289
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> y <_ ( y + 1 ) ) |
| 291 |
284 285 287 288 290
|
letrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) <_ ( y + 1 ) ) |
| 292 |
|
fznn |
|- ( ( y + 1 ) e. ZZ -> ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) <-> ( ( 2nd ` T ) e. NN /\ ( 2nd ` T ) <_ ( y + 1 ) ) ) ) |
| 293 |
187 292
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) <-> ( ( 2nd ` T ) e. NN /\ ( 2nd ` T ) <_ ( y + 1 ) ) ) ) |
| 294 |
293
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) <-> ( ( 2nd ` T ) e. NN /\ ( 2nd ` T ) <_ ( y + 1 ) ) ) ) |
| 295 |
283 291 294
|
mpbir2and |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) ) |
| 296 |
51
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) e. NN ) |
| 297 |
|
1red |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> 1 e. RR ) |
| 298 |
284 285 297 288
|
leadd1dd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) |
| 299 |
|
fznn |
|- ( ( y + 1 ) e. ZZ -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) ) ) |
| 300 |
187 299
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) ) ) |
| 301 |
300
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) ) ) |
| 302 |
296 298 301
|
mpbir2and |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) ) |
| 303 |
|
prssi |
|- ( ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) ) |
| 304 |
295 302 303
|
syl2anc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) ) |
| 305 |
|
imass2 |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) ) |
| 306 |
304 305
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) ) |
| 307 |
282 306
|
eqsstrrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) ) |
| 308 |
281 307
|
eqssd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
| 309 |
215
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 310 |
308 309
|
eqtrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 311 |
|
undif |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... ( y + 1 ) ) ) |
| 312 |
304 311
|
sylib |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... ( y + 1 ) ) ) |
| 313 |
312
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 314 |
224
|
a1i |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
| 315 |
|
eluzp1p1 |
|- ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) |
| 316 |
150 315
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) |
| 317 |
316
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) |
| 318 |
149 317
|
eqeltrrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) ) |
| 319 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( y + 1 ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) |
| 320 |
318 319
|
syl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) |
| 321 |
320
|
ssdifd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 322 |
321
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 323 |
|
resiima |
|- ( ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 324 |
322 323
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 325 |
314 324
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( (/) u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 326 |
|
imaundi |
|- ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 327 |
|
uncom |
|- ( (/) u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) |
| 328 |
|
un0 |
|- ( ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 329 |
327 328
|
eqtr2i |
|- ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( (/) u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 330 |
325 326 329
|
3eqtr4g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 331 |
313 330
|
eqtr3d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 332 |
310 331
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 333 |
279 332
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 334 |
333 312
|
eqtrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( 1 ... ( y + 1 ) ) ) |
| 335 |
334
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 336 |
278 335
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 337 |
336
|
xpeq1d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) |
| 338 |
|
imaco |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 339 |
112
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 340 |
|
incom |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 341 |
126
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) e. RR ) |
| 342 |
186
|
peano2nnd |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. NN ) |
| 343 |
342
|
nnred |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. RR ) |
| 344 |
343
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( y + 1 ) + 1 ) e. RR ) |
| 345 |
21
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) ) |
| 346 |
116
|
ltp1d |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y < ( y + 1 ) ) |
| 347 |
346
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> y < ( y + 1 ) ) |
| 348 |
284 285 287 288 347
|
lelttrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) < ( y + 1 ) ) |
| 349 |
284 287 297 348
|
ltadd1dd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) ) |
| 350 |
284 341 344 345 349
|
lttrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) < ( ( y + 1 ) + 1 ) ) |
| 351 |
|
ltnle |
|- ( ( ( 2nd ` T ) e. RR /\ ( ( y + 1 ) + 1 ) e. RR ) -> ( ( 2nd ` T ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) ) |
| 352 |
20 343 351
|
syl2an |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) ) |
| 353 |
352
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) ) |
| 354 |
350 353
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) |
| 355 |
|
elfzle1 |
|- ( ( 2nd ` T ) e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) |
| 356 |
354 355
|
nsyl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( 2nd ` T ) e. ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 357 |
|
disjsn |
|- ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) = (/) <-> -. ( 2nd ` T ) e. ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 358 |
356 357
|
sylibr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) = (/) ) |
| 359 |
|
ltnle |
|- ( ( ( ( 2nd ` T ) + 1 ) e. RR /\ ( ( y + 1 ) + 1 ) e. RR ) -> ( ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) ) |
| 360 |
126 343 359
|
syl2an |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) ) |
| 361 |
360
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) ) |
| 362 |
349 361
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) |
| 363 |
|
elfzle1 |
|- ( ( ( 2nd ` T ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) |
| 364 |
362 363
|
nsyl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( ( 2nd ` T ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 365 |
|
disjsn |
|- ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) <-> -. ( ( 2nd ` T ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 366 |
364 365
|
sylibr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
| 367 |
358 366
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) u. ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( (/) u. (/) ) ) |
| 368 |
140
|
ineq2i |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( ( ( y + 1 ) + 1 ) ... N ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) |
| 369 |
|
indi |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) u. ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) |
| 370 |
368 369
|
eqtr2i |
|- ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) u. ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
| 371 |
367 370 144
|
3eqtr3g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
| 372 |
340 371
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) |
| 373 |
|
fnimadisj |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) |
| 374 |
339 372 373
|
syl2anc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) |
| 375 |
342 226
|
eleqtrdi |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 376 |
|
fzss1 |
|- ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 377 |
|
reldisj |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 378 |
375 376 377
|
3syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 379 |
378
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
| 380 |
371 379
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
| 381 |
|
resiima |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 382 |
380 381
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 383 |
374 382
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( (/) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 384 |
|
imaundir |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 385 |
|
uncom |
|- ( (/) u. ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( ( y + 1 ) + 1 ) ... N ) u. (/) ) |
| 386 |
|
un0 |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) u. (/) ) = ( ( ( y + 1 ) + 1 ) ... N ) |
| 387 |
385 386
|
eqtr2i |
|- ( ( ( y + 1 ) + 1 ) ... N ) = ( (/) u. ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 388 |
383 384 387
|
3eqtr4g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 389 |
388
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 390 |
338 389
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 391 |
390
|
xpeq1d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
| 392 |
337 391
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 393 |
277 392
|
syldan |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 394 |
393
|
oveq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 395 |
|
iffalse |
|- ( -. y < ( 2nd ` T ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = ( y + 1 ) ) |
| 396 |
395
|
csbeq1d |
|- ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 397 |
|
ovex |
|- ( y + 1 ) e. _V |
| 398 |
|
oveq2 |
|- ( j = ( y + 1 ) -> ( 1 ... j ) = ( 1 ... ( y + 1 ) ) ) |
| 399 |
398
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 400 |
399
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) |
| 401 |
|
oveq1 |
|- ( j = ( y + 1 ) -> ( j + 1 ) = ( ( y + 1 ) + 1 ) ) |
| 402 |
401
|
oveq1d |
|- ( j = ( y + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 403 |
402
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 404 |
403
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
| 405 |
400 404
|
uneq12d |
|- ( j = ( y + 1 ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 406 |
405
|
oveq2d |
|- ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 407 |
397 406
|
csbie |
|- [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 408 |
396 407
|
eqtrdi |
|- ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 409 |
408
|
adantl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 410 |
395
|
csbeq1d |
|- ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 411 |
398
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 412 |
411
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) |
| 413 |
402
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 414 |
413
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
| 415 |
412 414
|
uneq12d |
|- ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 416 |
415
|
oveq2d |
|- ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 417 |
397 416
|
csbie |
|- [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 418 |
410 417
|
eqtrdi |
|- ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 419 |
418
|
adantl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 420 |
394 409 419
|
3eqtr4d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 421 |
274 420
|
pm2.61dan |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 422 |
421
|
mpteq2dva |
|- ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 423 |
109 422
|
eqtr4d |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 424 |
|
opex |
|- <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. _V |
| 425 |
424 24
|
op1std |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. ) |
| 426 |
424 24
|
op2ndd |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( 2nd ` t ) = ( 2nd ` T ) ) |
| 427 |
|
breq2 |
|- ( ( 2nd ` t ) = ( 2nd ` T ) -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) |
| 428 |
427
|
ifbid |
|- ( ( 2nd ` t ) = ( 2nd ` T ) -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) |
| 429 |
428
|
csbeq1d |
|- ( ( 2nd ` t ) = ( 2nd ` T ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 430 |
|
fvex |
|- ( 1st ` ( 1st ` T ) ) e. _V |
| 431 |
430 80
|
op1std |
|- ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) |
| 432 |
430 80
|
op2ndd |
|- ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) ) |
| 433 |
|
id |
|- ( ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) |
| 434 |
|
imaeq1 |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) ) |
| 435 |
434
|
xpeq1d |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 436 |
|
imaeq1 |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) ) |
| 437 |
436
|
xpeq1d |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 438 |
435 437
|
uneq12d |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 439 |
433 438
|
oveqan12d |
|- ( ( ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) /\ ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) ) -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 440 |
431 432 439
|
syl2anc |
|- ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 441 |
440
|
csbeq2dv |
|- ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 442 |
429 441
|
sylan9eqr |
|- ( ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. /\ ( 2nd ` t ) = ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 443 |
425 426 442
|
syl2anc |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 444 |
443
|
mpteq2dv |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 445 |
444
|
eqeq2d |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 446 |
445 2
|
elrab2 |
|- ( <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. S <-> ( <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 447 |
90 423 446
|
sylanbrc |
|- ( ph -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. S ) |