Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem22.s |
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } |
3 |
|
poimirlem22.1 |
|- ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
4 |
|
poimirlem22.2 |
|- ( ph -> T e. S ) |
5 |
|
poimirlem15.3 |
|- ( ph -> ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) ) |
6 |
|
elrabi |
|- ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
7 |
6 2
|
eleq2s |
|- ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
8 |
4 7
|
syl |
|- ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
9 |
|
xp1st |
|- ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
10 |
|
xp1st |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
11 |
8 9 10
|
3syl |
|- ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
12 |
|
xp2nd |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
13 |
8 9 12
|
3syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
14 |
|
fvex |
|- ( 2nd ` ( 1st ` T ) ) e. _V |
15 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
16 |
14 15
|
elab |
|- ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
17 |
13 16
|
sylib |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
18 |
|
elfznn |
|- ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) e. NN ) |
19 |
5 18
|
syl |
|- ( ph -> ( 2nd ` T ) e. NN ) |
20 |
19
|
nnred |
|- ( ph -> ( 2nd ` T ) e. RR ) |
21 |
20
|
ltp1d |
|- ( ph -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) ) |
22 |
20 21
|
ltned |
|- ( ph -> ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) ) |
23 |
22
|
necomd |
|- ( ph -> ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) |
24 |
|
fvex |
|- ( 2nd ` T ) e. _V |
25 |
|
ovex |
|- ( ( 2nd ` T ) + 1 ) e. _V |
26 |
|
f1oprg |
|- ( ( ( ( 2nd ` T ) e. _V /\ ( ( 2nd ` T ) + 1 ) e. _V ) /\ ( ( ( 2nd ` T ) + 1 ) e. _V /\ ( 2nd ` T ) e. _V ) ) -> ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) ) |
27 |
24 25 25 24 26
|
mp4an |
|- ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
28 |
22 23 27
|
syl2anc |
|- ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
29 |
|
prcom |
|- { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } |
30 |
|
f1oeq3 |
|- ( { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
31 |
29 30
|
ax-mp |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
32 |
28 31
|
sylib |
|- ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
33 |
|
f1oi |
|- ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) : ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -1-1-onto-> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
34 |
|
disjdif |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = (/) |
35 |
|
f1oun |
|- ( ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) : ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -1-1-onto-> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) /\ ( ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = (/) /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = (/) ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
36 |
34 34 35
|
mpanr12 |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) : ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -1-1-onto-> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
37 |
32 33 36
|
sylancl |
|- ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
38 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
39 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
40 |
38 39
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
41 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
42 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
43 |
41 42
|
syl |
|- ( ph -> ( N - 1 ) e. ZZ ) |
44 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
45 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
46 |
43 44 45
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
47 |
40 46
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
48 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
49 |
47 48
|
syl |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
50 |
49 5
|
sseldd |
|- ( ph -> ( 2nd ` T ) e. ( 1 ... N ) ) |
51 |
19
|
peano2nnd |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. NN ) |
52 |
43
|
zred |
|- ( ph -> ( N - 1 ) e. RR ) |
53 |
1
|
nnred |
|- ( ph -> N e. RR ) |
54 |
|
elfzle2 |
|- ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) <_ ( N - 1 ) ) |
55 |
5 54
|
syl |
|- ( ph -> ( 2nd ` T ) <_ ( N - 1 ) ) |
56 |
53
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
57 |
20 52 53 55 56
|
lelttrd |
|- ( ph -> ( 2nd ` T ) < N ) |
58 |
19
|
nnzd |
|- ( ph -> ( 2nd ` T ) e. ZZ ) |
59 |
|
zltp1le |
|- ( ( ( 2nd ` T ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` T ) < N <-> ( ( 2nd ` T ) + 1 ) <_ N ) ) |
60 |
58 41 59
|
syl2anc |
|- ( ph -> ( ( 2nd ` T ) < N <-> ( ( 2nd ` T ) + 1 ) <_ N ) ) |
61 |
57 60
|
mpbid |
|- ( ph -> ( ( 2nd ` T ) + 1 ) <_ N ) |
62 |
|
fznn |
|- ( N e. ZZ -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
63 |
41 62
|
syl |
|- ( ph -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
64 |
51 61 63
|
mpbir2and |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) ) |
65 |
|
prssi |
|- ( ( ( 2nd ` T ) e. ( 1 ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) ) |
66 |
50 64 65
|
syl2anc |
|- ( ph -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) ) |
67 |
|
undif |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) ) |
68 |
66 67
|
sylib |
|- ( ph -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) ) |
69 |
|
f1oeq23 |
|- ( ( ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) <-> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
70 |
68 68 69
|
syl2anc |
|- ( ph -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) <-> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
71 |
37 70
|
mpbid |
|- ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
72 |
|
f1oco |
|- ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
73 |
17 71 72
|
syl2anc |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
74 |
|
prex |
|- { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } e. _V |
75 |
|
ovex |
|- ( 1 ... N ) e. _V |
76 |
|
difexg |
|- ( ( 1 ... N ) e. _V -> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. _V ) |
77 |
|
resiexg |
|- ( ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. _V -> ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) e. _V ) |
78 |
75 76 77
|
mp2b |
|- ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) e. _V |
79 |
74 78
|
unex |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) e. _V |
80 |
14 79
|
coex |
|- ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. _V |
81 |
|
f1oeq1 |
|- ( f = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
82 |
80 81
|
elab |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
83 |
73 82
|
sylibr |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
84 |
|
opelxpi |
|- ( ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) /\ ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
85 |
11 83 84
|
syl2anc |
|- ( ph -> <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
86 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
87 |
49 86
|
sstrdi |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
88 |
87 5
|
sseldd |
|- ( ph -> ( 2nd ` T ) e. ( 0 ... N ) ) |
89 |
|
opelxpi |
|- ( ( <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( 2nd ` T ) e. ( 0 ... N ) ) -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
90 |
85 88 89
|
syl2anc |
|- ( ph -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
91 |
|
fveq2 |
|- ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) |
92 |
91
|
breq2d |
|- ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) |
93 |
92
|
ifbid |
|- ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) |
94 |
93
|
csbeq1d |
|- ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
95 |
|
2fveq3 |
|- ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) |
96 |
|
2fveq3 |
|- ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) |
97 |
96
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) |
98 |
97
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
99 |
96
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) |
100 |
99
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
101 |
98 100
|
uneq12d |
|- ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
102 |
95 101
|
oveq12d |
|- ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
103 |
102
|
csbeq2dv |
|- ( t = T -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
104 |
94 103
|
eqtrd |
|- ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
105 |
104
|
mpteq2dv |
|- ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
106 |
105
|
eqeq2d |
|- ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
107 |
106 2
|
elrab2 |
|- ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
108 |
107
|
simprbi |
|- ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
109 |
4 108
|
syl |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
110 |
|
imaco |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) ) |
111 |
|
f1ofn |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
112 |
28 111
|
syl |
|- ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
113 |
112
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
114 |
|
incom |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( 1 ... y ) ) = ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
115 |
|
elfznn0 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 ) |
116 |
115
|
nn0red |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) |
117 |
|
ltnle |
|- ( ( y e. RR /\ ( 2nd ` T ) e. RR ) -> ( y < ( 2nd ` T ) <-> -. ( 2nd ` T ) <_ y ) ) |
118 |
116 20 117
|
syl2anr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( 2nd ` T ) <-> -. ( 2nd ` T ) <_ y ) ) |
119 |
118
|
biimpa |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( 2nd ` T ) <_ y ) |
120 |
|
elfzle2 |
|- ( ( 2nd ` T ) e. ( 1 ... y ) -> ( 2nd ` T ) <_ y ) |
121 |
119 120
|
nsyl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( 2nd ` T ) e. ( 1 ... y ) ) |
122 |
|
disjsn |
|- ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) = (/) <-> -. ( 2nd ` T ) e. ( 1 ... y ) ) |
123 |
121 122
|
sylibr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) = (/) ) |
124 |
116
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y e. RR ) |
125 |
20
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) e. RR ) |
126 |
51
|
nnred |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. RR ) |
127 |
126
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) e. RR ) |
128 |
|
simpr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y < ( 2nd ` T ) ) |
129 |
21
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) ) |
130 |
124 125 127 128 129
|
lttrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y < ( ( 2nd ` T ) + 1 ) ) |
131 |
|
ltnle |
|- ( ( y e. RR /\ ( ( 2nd ` T ) + 1 ) e. RR ) -> ( y < ( ( 2nd ` T ) + 1 ) <-> -. ( ( 2nd ` T ) + 1 ) <_ y ) ) |
132 |
116 126 131
|
syl2anr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( ( 2nd ` T ) + 1 ) <-> -. ( ( 2nd ` T ) + 1 ) <_ y ) ) |
133 |
132
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( y < ( ( 2nd ` T ) + 1 ) <-> -. ( ( 2nd ` T ) + 1 ) <_ y ) ) |
134 |
130 133
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( ( 2nd ` T ) + 1 ) <_ y ) |
135 |
|
elfzle2 |
|- ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... y ) -> ( ( 2nd ` T ) + 1 ) <_ y ) |
136 |
134 135
|
nsyl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( ( 2nd ` T ) + 1 ) e. ( 1 ... y ) ) |
137 |
|
disjsn |
|- ( ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) <-> -. ( ( 2nd ` T ) + 1 ) e. ( 1 ... y ) ) |
138 |
136 137
|
sylibr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
139 |
123 138
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) u. ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( (/) u. (/) ) ) |
140 |
|
df-pr |
|- { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } = ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) |
141 |
140
|
ineq2i |
|- ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 1 ... y ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) |
142 |
|
indi |
|- ( ( 1 ... y ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) u. ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) |
143 |
141 142
|
eqtr2i |
|- ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) u. ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
144 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
145 |
139 143 144
|
3eqtr3g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
146 |
114 145
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( 1 ... y ) ) = (/) ) |
147 |
|
fnimadisj |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( 1 ... y ) ) = (/) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) = (/) ) |
148 |
113 146 147
|
syl2anc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) = (/) ) |
149 |
40
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
150 |
|
elfzuz3 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) ) |
151 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) |
152 |
150 151
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) |
153 |
152
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) |
154 |
149 153
|
eqeltrrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` y ) ) |
155 |
|
fzss2 |
|- ( N e. ( ZZ>= ` y ) -> ( 1 ... y ) C_ ( 1 ... N ) ) |
156 |
|
reldisj |
|- ( ( 1 ... y ) C_ ( 1 ... N ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
157 |
154 155 156
|
3syl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
158 |
157
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
159 |
145 158
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
160 |
|
resiima |
|- ( ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) = ( 1 ... y ) ) |
161 |
159 160
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) = ( 1 ... y ) ) |
162 |
148 161
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) ) = ( (/) u. ( 1 ... y ) ) ) |
163 |
|
imaundir |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) ) |
164 |
|
uncom |
|- ( (/) u. ( 1 ... y ) ) = ( ( 1 ... y ) u. (/) ) |
165 |
|
un0 |
|- ( ( 1 ... y ) u. (/) ) = ( 1 ... y ) |
166 |
164 165
|
eqtr2i |
|- ( 1 ... y ) = ( (/) u. ( 1 ... y ) ) |
167 |
162 163 166
|
3eqtr4g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) = ( 1 ... y ) ) |
168 |
167
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) |
169 |
110 168
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) |
170 |
169
|
xpeq1d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) ) |
171 |
|
imaco |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) ) |
172 |
|
imaundir |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) ) |
173 |
|
imassrn |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } |
174 |
173
|
a1i |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
175 |
|
fnima |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
176 |
28 111 175
|
3syl |
|- ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
177 |
176
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
178 |
|
elfzelz |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ ) |
179 |
|
zltp1le |
|- ( ( y e. ZZ /\ ( 2nd ` T ) e. ZZ ) -> ( y < ( 2nd ` T ) <-> ( y + 1 ) <_ ( 2nd ` T ) ) ) |
180 |
178 58 179
|
syl2anr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( 2nd ` T ) <-> ( y + 1 ) <_ ( 2nd ` T ) ) ) |
181 |
180
|
biimpa |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( y + 1 ) <_ ( 2nd ` T ) ) |
182 |
20 53 57
|
ltled |
|- ( ph -> ( 2nd ` T ) <_ N ) |
183 |
182
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) <_ N ) |
184 |
58
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) e. ZZ ) |
185 |
|
nn0p1nn |
|- ( y e. NN0 -> ( y + 1 ) e. NN ) |
186 |
115 185
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. NN ) |
187 |
186
|
nnzd |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ZZ ) |
188 |
187
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ZZ ) |
189 |
41
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ZZ ) |
190 |
|
elfz |
|- ( ( ( 2nd ` T ) e. ZZ /\ ( y + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( 2nd ` T ) /\ ( 2nd ` T ) <_ N ) ) ) |
191 |
184 188 189 190
|
syl3anc |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( 2nd ` T ) /\ ( 2nd ` T ) <_ N ) ) ) |
192 |
191
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( 2nd ` T ) /\ ( 2nd ` T ) <_ N ) ) ) |
193 |
181 183 192
|
mpbir2and |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) e. ( ( y + 1 ) ... N ) ) |
194 |
|
1red |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> 1 e. RR ) |
195 |
|
ltle |
|- ( ( y e. RR /\ ( 2nd ` T ) e. RR ) -> ( y < ( 2nd ` T ) -> y <_ ( 2nd ` T ) ) ) |
196 |
116 20 195
|
syl2anr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( 2nd ` T ) -> y <_ ( 2nd ` T ) ) ) |
197 |
196
|
imp |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y <_ ( 2nd ` T ) ) |
198 |
124 125 194 197
|
leadd1dd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) |
199 |
61
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) <_ N ) |
200 |
58
|
peano2zd |
|- ( ph -> ( ( 2nd ` T ) + 1 ) e. ZZ ) |
201 |
200
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) + 1 ) e. ZZ ) |
202 |
|
elfz |
|- ( ( ( ( 2nd ` T ) + 1 ) e. ZZ /\ ( y + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
203 |
201 188 189 202
|
syl3anc |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
204 |
203
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) ) |
205 |
198 199 204
|
mpbir2and |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) ) |
206 |
|
prssi |
|- ( ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) ) |
207 |
193 205 206
|
syl2anc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) ) |
208 |
|
imass2 |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) ) |
209 |
207 208
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) ) |
210 |
177 209
|
eqsstrrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) ) |
211 |
174 210
|
eqssd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
212 |
|
f1ofo |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
213 |
|
forn |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
214 |
28 212 213
|
3syl |
|- ( ph -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) |
215 |
214 29
|
eqtrdi |
|- ( ph -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
216 |
215
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
217 |
211 216
|
eqtrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
218 |
|
undif |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( y + 1 ) ... N ) ) |
219 |
207 218
|
sylib |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( y + 1 ) ... N ) ) |
220 |
219
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) ) |
221 |
|
fnresi |
|- ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) Fn ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
222 |
|
disjdifr |
|- ( ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) |
223 |
|
fnimadisj |
|- ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) Fn ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) /\ ( ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
224 |
221 222 223
|
mp2an |
|- ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) |
225 |
224
|
a1i |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
226 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
227 |
186 226
|
eleqtrdi |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) |
228 |
|
fzss1 |
|- ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) |
229 |
227 228
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) |
230 |
229
|
ssdifd |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
231 |
|
resiima |
|- ( ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
232 |
230 231
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
233 |
232
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
234 |
225 233
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( (/) u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
235 |
|
imaundi |
|- ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
236 |
|
uncom |
|- ( (/) u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) |
237 |
|
un0 |
|- ( ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
238 |
236 237
|
eqtr2i |
|- ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( (/) u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
239 |
234 235 238
|
3eqtr4g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
240 |
220 239
|
eqtr3d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
241 |
217 240
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
242 |
172 241
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
243 |
242 219
|
eqtrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( y + 1 ) ... N ) ) |
244 |
243
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) |
245 |
171 244
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) |
246 |
245
|
xpeq1d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) |
247 |
170 246
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
248 |
247
|
oveq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
249 |
|
iftrue |
|- ( y < ( 2nd ` T ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = y ) |
250 |
249
|
csbeq1d |
|- ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
251 |
|
vex |
|- y e. _V |
252 |
|
oveq2 |
|- ( j = y -> ( 1 ... j ) = ( 1 ... y ) ) |
253 |
252
|
imaeq2d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) ) |
254 |
253
|
xpeq1d |
|- ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) ) |
255 |
|
oveq1 |
|- ( j = y -> ( j + 1 ) = ( y + 1 ) ) |
256 |
255
|
oveq1d |
|- ( j = y -> ( ( j + 1 ) ... N ) = ( ( y + 1 ) ... N ) ) |
257 |
256
|
imaeq2d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) ) |
258 |
257
|
xpeq1d |
|- ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) |
259 |
254 258
|
uneq12d |
|- ( j = y -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
260 |
259
|
oveq2d |
|- ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
261 |
251 260
|
csbie |
|- [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
262 |
250 261
|
eqtrdi |
|- ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
263 |
262
|
adantl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
264 |
249
|
csbeq1d |
|- ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
265 |
252
|
imaeq2d |
|- ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) |
266 |
265
|
xpeq1d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) ) |
267 |
256
|
imaeq2d |
|- ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) |
268 |
267
|
xpeq1d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) |
269 |
266 268
|
uneq12d |
|- ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
270 |
269
|
oveq2d |
|- ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
271 |
251 270
|
csbie |
|- [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
272 |
264 271
|
eqtrdi |
|- ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
273 |
272
|
adantl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
274 |
248 263 273
|
3eqtr4d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
275 |
|
lenlt |
|- ( ( ( 2nd ` T ) e. RR /\ y e. RR ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) |
276 |
20 116 275
|
syl2an |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) |
277 |
276
|
biimpar |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> ( 2nd ` T ) <_ y ) |
278 |
|
imaco |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) ) |
279 |
|
imaundir |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) ) |
280 |
|
imassrn |
|- ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } |
281 |
280
|
a1i |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
282 |
176
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
283 |
19
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) e. NN ) |
284 |
20
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) e. RR ) |
285 |
116
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> y e. RR ) |
286 |
186
|
nnred |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. RR ) |
287 |
286
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( y + 1 ) e. RR ) |
288 |
|
simpr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) <_ y ) |
289 |
116
|
lep1d |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( y + 1 ) ) |
290 |
289
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> y <_ ( y + 1 ) ) |
291 |
284 285 287 288 290
|
letrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) <_ ( y + 1 ) ) |
292 |
|
fznn |
|- ( ( y + 1 ) e. ZZ -> ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) <-> ( ( 2nd ` T ) e. NN /\ ( 2nd ` T ) <_ ( y + 1 ) ) ) ) |
293 |
187 292
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) <-> ( ( 2nd ` T ) e. NN /\ ( 2nd ` T ) <_ ( y + 1 ) ) ) ) |
294 |
293
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) <-> ( ( 2nd ` T ) e. NN /\ ( 2nd ` T ) <_ ( y + 1 ) ) ) ) |
295 |
283 291 294
|
mpbir2and |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) ) |
296 |
51
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) e. NN ) |
297 |
|
1red |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> 1 e. RR ) |
298 |
284 285 297 288
|
leadd1dd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) |
299 |
|
fznn |
|- ( ( y + 1 ) e. ZZ -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) ) ) |
300 |
187 299
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) ) ) |
301 |
300
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) ) ) |
302 |
296 298 301
|
mpbir2and |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) ) |
303 |
|
prssi |
|- ( ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) ) |
304 |
295 302 303
|
syl2anc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) ) |
305 |
|
imass2 |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) ) |
306 |
304 305
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) ) |
307 |
282 306
|
eqsstrrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) ) |
308 |
281 307
|
eqssd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } ) |
309 |
215
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
310 |
308 309
|
eqtrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
311 |
|
undif |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... ( y + 1 ) ) ) |
312 |
304 311
|
sylib |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... ( y + 1 ) ) ) |
313 |
312
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) ) |
314 |
224
|
a1i |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
315 |
|
eluzp1p1 |
|- ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) |
316 |
150 315
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) |
317 |
316
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) |
318 |
149 317
|
eqeltrrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) ) |
319 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( y + 1 ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) |
320 |
318 319
|
syl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) |
321 |
320
|
ssdifd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
322 |
321
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
323 |
|
resiima |
|- ( ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
324 |
322 323
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
325 |
314 324
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( (/) u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
326 |
|
imaundi |
|- ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
327 |
|
uncom |
|- ( (/) u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) |
328 |
|
un0 |
|- ( ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
329 |
327 328
|
eqtr2i |
|- ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( (/) u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
330 |
325 326 329
|
3eqtr4g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
331 |
313 330
|
eqtr3d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
332 |
310 331
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
333 |
279 332
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
334 |
333 312
|
eqtrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( 1 ... ( y + 1 ) ) ) |
335 |
334
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
336 |
278 335
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
337 |
336
|
xpeq1d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) |
338 |
|
imaco |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
339 |
112
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
340 |
|
incom |
|- ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
341 |
126
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) e. RR ) |
342 |
186
|
peano2nnd |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. NN ) |
343 |
342
|
nnred |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. RR ) |
344 |
343
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( y + 1 ) + 1 ) e. RR ) |
345 |
21
|
ad2antrr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) ) |
346 |
116
|
ltp1d |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y < ( y + 1 ) ) |
347 |
346
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> y < ( y + 1 ) ) |
348 |
284 285 287 288 347
|
lelttrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) < ( y + 1 ) ) |
349 |
284 287 297 348
|
ltadd1dd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) ) |
350 |
284 341 344 345 349
|
lttrd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) < ( ( y + 1 ) + 1 ) ) |
351 |
|
ltnle |
|- ( ( ( 2nd ` T ) e. RR /\ ( ( y + 1 ) + 1 ) e. RR ) -> ( ( 2nd ` T ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) ) |
352 |
20 343 351
|
syl2an |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) ) |
353 |
352
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) ) |
354 |
350 353
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) |
355 |
|
elfzle1 |
|- ( ( 2nd ` T ) e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) |
356 |
354 355
|
nsyl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( 2nd ` T ) e. ( ( ( y + 1 ) + 1 ) ... N ) ) |
357 |
|
disjsn |
|- ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) = (/) <-> -. ( 2nd ` T ) e. ( ( ( y + 1 ) + 1 ) ... N ) ) |
358 |
356 357
|
sylibr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) = (/) ) |
359 |
|
ltnle |
|- ( ( ( ( 2nd ` T ) + 1 ) e. RR /\ ( ( y + 1 ) + 1 ) e. RR ) -> ( ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) ) |
360 |
126 343 359
|
syl2an |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) ) |
361 |
360
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) ) |
362 |
349 361
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) |
363 |
|
elfzle1 |
|- ( ( ( 2nd ` T ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) |
364 |
362 363
|
nsyl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( ( 2nd ` T ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) ) |
365 |
|
disjsn |
|- ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) <-> -. ( ( 2nd ` T ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) ) |
366 |
364 365
|
sylibr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
367 |
358 366
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) u. ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( (/) u. (/) ) ) |
368 |
140
|
ineq2i |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( ( ( y + 1 ) + 1 ) ... N ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) |
369 |
|
indi |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) u. ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) |
370 |
368 369
|
eqtr2i |
|- ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) u. ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) |
371 |
367 370 144
|
3eqtr3g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) |
372 |
340 371
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) |
373 |
|
fnimadisj |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) |
374 |
339 372 373
|
syl2anc |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) |
375 |
342 226
|
eleqtrdi |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
376 |
|
fzss1 |
|- ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) |
377 |
|
reldisj |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
378 |
375 376 377
|
3syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
379 |
378
|
ad2antlr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) |
380 |
371 379
|
mpbid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) |
381 |
|
resiima |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) + 1 ) ... N ) ) |
382 |
380 381
|
syl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) + 1 ) ... N ) ) |
383 |
374 382
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( (/) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
384 |
|
imaundir |
|- ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
385 |
|
uncom |
|- ( (/) u. ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( ( y + 1 ) + 1 ) ... N ) u. (/) ) |
386 |
|
un0 |
|- ( ( ( ( y + 1 ) + 1 ) ... N ) u. (/) ) = ( ( ( y + 1 ) + 1 ) ... N ) |
387 |
385 386
|
eqtr2i |
|- ( ( ( y + 1 ) + 1 ) ... N ) = ( (/) u. ( ( ( y + 1 ) + 1 ) ... N ) ) |
388 |
383 384 387
|
3eqtr4g |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) + 1 ) ... N ) ) |
389 |
388
|
imaeq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
390 |
338 389
|
eqtrid |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
391 |
390
|
xpeq1d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
392 |
337 391
|
uneq12d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
393 |
277 392
|
syldan |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
394 |
393
|
oveq2d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
395 |
|
iffalse |
|- ( -. y < ( 2nd ` T ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = ( y + 1 ) ) |
396 |
395
|
csbeq1d |
|- ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
397 |
|
ovex |
|- ( y + 1 ) e. _V |
398 |
|
oveq2 |
|- ( j = ( y + 1 ) -> ( 1 ... j ) = ( 1 ... ( y + 1 ) ) ) |
399 |
398
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) ) |
400 |
399
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) |
401 |
|
oveq1 |
|- ( j = ( y + 1 ) -> ( j + 1 ) = ( ( y + 1 ) + 1 ) ) |
402 |
401
|
oveq1d |
|- ( j = ( y + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( y + 1 ) + 1 ) ... N ) ) |
403 |
402
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
404 |
403
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
405 |
400 404
|
uneq12d |
|- ( j = ( y + 1 ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
406 |
405
|
oveq2d |
|- ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
407 |
397 406
|
csbie |
|- [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
408 |
396 407
|
eqtrdi |
|- ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
409 |
408
|
adantl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
410 |
395
|
csbeq1d |
|- ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
411 |
398
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
412 |
411
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) |
413 |
402
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
414 |
413
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
415 |
412 414
|
uneq12d |
|- ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
416 |
415
|
oveq2d |
|- ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
417 |
397 416
|
csbie |
|- [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
418 |
410 417
|
eqtrdi |
|- ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
419 |
418
|
adantl |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
420 |
394 409 419
|
3eqtr4d |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
421 |
274 420
|
pm2.61dan |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
422 |
421
|
mpteq2dva |
|- ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
423 |
109 422
|
eqtr4d |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
424 |
|
opex |
|- <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. _V |
425 |
424 24
|
op1std |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. ) |
426 |
424 24
|
op2ndd |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( 2nd ` t ) = ( 2nd ` T ) ) |
427 |
|
breq2 |
|- ( ( 2nd ` t ) = ( 2nd ` T ) -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) |
428 |
427
|
ifbid |
|- ( ( 2nd ` t ) = ( 2nd ` T ) -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) |
429 |
428
|
csbeq1d |
|- ( ( 2nd ` t ) = ( 2nd ` T ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
430 |
|
fvex |
|- ( 1st ` ( 1st ` T ) ) e. _V |
431 |
430 80
|
op1std |
|- ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) |
432 |
430 80
|
op2ndd |
|- ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) ) |
433 |
|
id |
|- ( ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) |
434 |
|
imaeq1 |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) ) |
435 |
434
|
xpeq1d |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
436 |
|
imaeq1 |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) ) |
437 |
436
|
xpeq1d |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
438 |
435 437
|
uneq12d |
|- ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
439 |
433 438
|
oveqan12d |
|- ( ( ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) /\ ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) ) -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
440 |
431 432 439
|
syl2anc |
|- ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
441 |
440
|
csbeq2dv |
|- ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
442 |
429 441
|
sylan9eqr |
|- ( ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. /\ ( 2nd ` t ) = ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
443 |
425 426 442
|
syl2anc |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
444 |
443
|
mpteq2dv |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
445 |
444
|
eqeq2d |
|- ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
446 |
445 2
|
elrab2 |
|- ( <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. S <-> ( <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
447 |
90 423 446
|
sylanbrc |
|- ( ph -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. S ) |