Metamath Proof Explorer


Theorem poimirlem15

Description: Lemma for poimir , that the face in poimirlem22 is a face. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0
|- ( ph -> N e. NN )
poimirlem22.s
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
poimirlem22.1
|- ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
poimirlem22.2
|- ( ph -> T e. S )
poimirlem15.3
|- ( ph -> ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) )
Assertion poimirlem15
|- ( ph -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. S )

Proof

Step Hyp Ref Expression
1 poimir.0
 |-  ( ph -> N e. NN )
2 poimirlem22.s
 |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
3 poimirlem22.1
 |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
4 poimirlem22.2
 |-  ( ph -> T e. S )
5 poimirlem15.3
 |-  ( ph -> ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) )
6 elrabi
 |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
7 6 2 eleq2s
 |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
8 4 7 syl
 |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
9 xp1st
 |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
10 xp1st
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
11 8 9 10 3syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
12 xp2nd
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
13 8 9 12 3syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
14 fvex
 |-  ( 2nd ` ( 1st ` T ) ) e. _V
15 f1oeq1
 |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
16 14 15 elab
 |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
17 13 16 sylib
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
18 elfznn
 |-  ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) e. NN )
19 5 18 syl
 |-  ( ph -> ( 2nd ` T ) e. NN )
20 19 nnred
 |-  ( ph -> ( 2nd ` T ) e. RR )
21 20 ltp1d
 |-  ( ph -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) )
22 20 21 ltned
 |-  ( ph -> ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) )
23 22 necomd
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) )
24 fvex
 |-  ( 2nd ` T ) e. _V
25 ovex
 |-  ( ( 2nd ` T ) + 1 ) e. _V
26 f1oprg
 |-  ( ( ( ( 2nd ` T ) e. _V /\ ( ( 2nd ` T ) + 1 ) e. _V ) /\ ( ( ( 2nd ` T ) + 1 ) e. _V /\ ( 2nd ` T ) e. _V ) ) -> ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } ) )
27 24 25 25 24 26 mp4an
 |-  ( ( ( 2nd ` T ) =/= ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) =/= ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } )
28 22 23 27 syl2anc
 |-  ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } )
29 prcom
 |-  { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) }
30 f1oeq3
 |-  ( { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
31 29 30 ax-mp
 |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } <-> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
32 28 31 sylib
 |-  ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
33 f1oi
 |-  ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) : ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -1-1-onto-> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
34 disjdif
 |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = (/)
35 f1oun
 |-  ( ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) : ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -1-1-onto-> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) /\ ( ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = (/) /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = (/) ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
36 34 34 35 mpanr12
 |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) : ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -1-1-onto-> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
37 32 33 36 sylancl
 |-  ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
38 1 nncnd
 |-  ( ph -> N e. CC )
39 npcan1
 |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N )
40 38 39 syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) = N )
41 1 nnzd
 |-  ( ph -> N e. ZZ )
42 peano2zm
 |-  ( N e. ZZ -> ( N - 1 ) e. ZZ )
43 41 42 syl
 |-  ( ph -> ( N - 1 ) e. ZZ )
44 uzid
 |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
45 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
46 43 44 45 3syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
47 40 46 eqeltrrd
 |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) )
48 fzss2
 |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
49 47 48 syl
 |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
50 49 5 sseldd
 |-  ( ph -> ( 2nd ` T ) e. ( 1 ... N ) )
51 19 peano2nnd
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) e. NN )
52 43 zred
 |-  ( ph -> ( N - 1 ) e. RR )
53 1 nnred
 |-  ( ph -> N e. RR )
54 elfzle2
 |-  ( ( 2nd ` T ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) <_ ( N - 1 ) )
55 5 54 syl
 |-  ( ph -> ( 2nd ` T ) <_ ( N - 1 ) )
56 53 ltm1d
 |-  ( ph -> ( N - 1 ) < N )
57 20 52 53 55 56 lelttrd
 |-  ( ph -> ( 2nd ` T ) < N )
58 19 nnzd
 |-  ( ph -> ( 2nd ` T ) e. ZZ )
59 zltp1le
 |-  ( ( ( 2nd ` T ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` T ) < N <-> ( ( 2nd ` T ) + 1 ) <_ N ) )
60 58 41 59 syl2anc
 |-  ( ph -> ( ( 2nd ` T ) < N <-> ( ( 2nd ` T ) + 1 ) <_ N ) )
61 57 60 mpbid
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) <_ N )
62 fznn
 |-  ( N e. ZZ -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) )
63 41 62 syl
 |-  ( ph -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) )
64 51 61 63 mpbir2and
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) )
65 prssi
 |-  ( ( ( 2nd ` T ) e. ( 1 ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... N ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) )
66 50 64 65 syl2anc
 |-  ( ph -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) )
67 undif
 |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... N ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) )
68 66 67 sylib
 |-  ( ph -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) )
69 f1oeq23
 |-  ( ( ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... N ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) <-> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
70 68 68 69 syl2anc
 |-  ( ph -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) -1-1-onto-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) <-> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
71 37 70 mpbid
 |-  ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
72 f1oco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
73 17 71 72 syl2anc
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
74 prex
 |-  { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } e. _V
75 ovex
 |-  ( 1 ... N ) e. _V
76 difexg
 |-  ( ( 1 ... N ) e. _V -> ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. _V )
77 resiexg
 |-  ( ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) e. _V -> ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) e. _V )
78 75 76 77 mp2b
 |-  ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) e. _V
79 74 78 unex
 |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) e. _V
80 14 79 coex
 |-  ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. _V
81 f1oeq1
 |-  ( f = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
82 80 81 elab
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
83 73 82 sylibr
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
84 opelxpi
 |-  ( ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) /\ ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
85 11 83 84 syl2anc
 |-  ( ph -> <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
86 fz1ssfz0
 |-  ( 1 ... N ) C_ ( 0 ... N )
87 49 86 sstrdi
 |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 0 ... N ) )
88 87 5 sseldd
 |-  ( ph -> ( 2nd ` T ) e. ( 0 ... N ) )
89 opelxpi
 |-  ( ( <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) /\ ( 2nd ` T ) e. ( 0 ... N ) ) -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
90 85 88 89 syl2anc
 |-  ( ph -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
91 fveq2
 |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) )
92 91 breq2d
 |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) )
93 92 ifbid
 |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) )
94 93 csbeq1d
 |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
95 2fveq3
 |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) )
96 2fveq3
 |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) )
97 96 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) )
98 97 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) )
99 96 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) )
100 99 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
101 98 100 uneq12d
 |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
102 95 101 oveq12d
 |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
103 102 csbeq2dv
 |-  ( t = T -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
104 94 103 eqtrd
 |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
105 104 mpteq2dv
 |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
106 105 eqeq2d
 |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
107 106 2 elrab2
 |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
108 107 simprbi
 |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
109 4 108 syl
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
110 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) )
111 f1ofn
 |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
112 28 111 syl
 |-  ( ph -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
113 112 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
114 incom
 |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( 1 ... y ) ) = ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
115 elfznn0
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 )
116 115 nn0red
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR )
117 ltnle
 |-  ( ( y e. RR /\ ( 2nd ` T ) e. RR ) -> ( y < ( 2nd ` T ) <-> -. ( 2nd ` T ) <_ y ) )
118 116 20 117 syl2anr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( 2nd ` T ) <-> -. ( 2nd ` T ) <_ y ) )
119 118 biimpa
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( 2nd ` T ) <_ y )
120 elfzle2
 |-  ( ( 2nd ` T ) e. ( 1 ... y ) -> ( 2nd ` T ) <_ y )
121 119 120 nsyl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( 2nd ` T ) e. ( 1 ... y ) )
122 disjsn
 |-  ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) = (/) <-> -. ( 2nd ` T ) e. ( 1 ... y ) )
123 121 122 sylibr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) = (/) )
124 116 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y e. RR )
125 20 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) e. RR )
126 51 nnred
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) e. RR )
127 126 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) e. RR )
128 simpr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y < ( 2nd ` T ) )
129 21 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) )
130 124 125 127 128 129 lttrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y < ( ( 2nd ` T ) + 1 ) )
131 ltnle
 |-  ( ( y e. RR /\ ( ( 2nd ` T ) + 1 ) e. RR ) -> ( y < ( ( 2nd ` T ) + 1 ) <-> -. ( ( 2nd ` T ) + 1 ) <_ y ) )
132 116 126 131 syl2anr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( ( 2nd ` T ) + 1 ) <-> -. ( ( 2nd ` T ) + 1 ) <_ y ) )
133 132 adantr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( y < ( ( 2nd ` T ) + 1 ) <-> -. ( ( 2nd ` T ) + 1 ) <_ y ) )
134 130 133 mpbid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( ( 2nd ` T ) + 1 ) <_ y )
135 elfzle2
 |-  ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... y ) -> ( ( 2nd ` T ) + 1 ) <_ y )
136 134 135 nsyl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> -. ( ( 2nd ` T ) + 1 ) e. ( 1 ... y ) )
137 disjsn
 |-  ( ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) <-> -. ( ( 2nd ` T ) + 1 ) e. ( 1 ... y ) )
138 136 137 sylibr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) )
139 123 138 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) u. ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( (/) u. (/) ) )
140 df-pr
 |-  { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } = ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } )
141 140 ineq2i
 |-  ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( 1 ... y ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) )
142 indi
 |-  ( ( 1 ... y ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) u. ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) )
143 141 142 eqtr2i
 |-  ( ( ( 1 ... y ) i^i { ( 2nd ` T ) } ) u. ( ( 1 ... y ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
144 un0
 |-  ( (/) u. (/) ) = (/)
145 139 143 144 3eqtr3g
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) )
146 114 145 eqtrid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( 1 ... y ) ) = (/) )
147 fnimadisj
 |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( 1 ... y ) ) = (/) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) = (/) )
148 113 146 147 syl2anc
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) = (/) )
149 40 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N )
150 elfzuz3
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) )
151 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
152 150 151 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
153 152 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
154 149 153 eqeltrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` y ) )
155 fzss2
 |-  ( N e. ( ZZ>= ` y ) -> ( 1 ... y ) C_ ( 1 ... N ) )
156 reldisj
 |-  ( ( 1 ... y ) C_ ( 1 ... N ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
157 154 155 156 3syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
158 157 adantr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 1 ... y ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
159 145 158 mpbid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
160 resiima
 |-  ( ( 1 ... y ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) = ( 1 ... y ) )
161 159 160 syl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) = ( 1 ... y ) )
162 148 161 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) ) = ( (/) u. ( 1 ... y ) ) )
163 imaundir
 |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... y ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... y ) ) )
164 uncom
 |-  ( (/) u. ( 1 ... y ) ) = ( ( 1 ... y ) u. (/) )
165 un0
 |-  ( ( 1 ... y ) u. (/) ) = ( 1 ... y )
166 164 165 eqtr2i
 |-  ( 1 ... y ) = ( (/) u. ( 1 ... y ) )
167 162 163 166 3eqtr4g
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) = ( 1 ... y ) )
168 167 imaeq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... y ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) )
169 110 168 eqtrid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) )
170 169 xpeq1d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) )
171 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) )
172 imaundir
 |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) )
173 imassrn
 |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. }
174 173 a1i
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } )
175 fnima
 |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } )
176 28 111 175 3syl
 |-  ( ph -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } )
177 176 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } )
178 elfzelz
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ )
179 zltp1le
 |-  ( ( y e. ZZ /\ ( 2nd ` T ) e. ZZ ) -> ( y < ( 2nd ` T ) <-> ( y + 1 ) <_ ( 2nd ` T ) ) )
180 178 58 179 syl2anr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( 2nd ` T ) <-> ( y + 1 ) <_ ( 2nd ` T ) ) )
181 180 biimpa
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( y + 1 ) <_ ( 2nd ` T ) )
182 20 53 57 ltled
 |-  ( ph -> ( 2nd ` T ) <_ N )
183 182 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) <_ N )
184 58 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) e. ZZ )
185 nn0p1nn
 |-  ( y e. NN0 -> ( y + 1 ) e. NN )
186 115 185 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. NN )
187 186 nnzd
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ZZ )
188 187 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ZZ )
189 41 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ZZ )
190 elfz
 |-  ( ( ( 2nd ` T ) e. ZZ /\ ( y + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( 2nd ` T ) /\ ( 2nd ` T ) <_ N ) ) )
191 184 188 189 190 syl3anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( 2nd ` T ) /\ ( 2nd ` T ) <_ N ) ) )
192 191 adantr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( 2nd ` T ) /\ ( 2nd ` T ) <_ N ) ) )
193 181 183 192 mpbir2and
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( 2nd ` T ) e. ( ( y + 1 ) ... N ) )
194 1red
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> 1 e. RR )
195 ltle
 |-  ( ( y e. RR /\ ( 2nd ` T ) e. RR ) -> ( y < ( 2nd ` T ) -> y <_ ( 2nd ` T ) ) )
196 116 20 195 syl2anr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y < ( 2nd ` T ) -> y <_ ( 2nd ` T ) ) )
197 196 imp
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> y <_ ( 2nd ` T ) )
198 124 125 194 197 leadd1dd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) )
199 61 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) <_ N )
200 58 peano2zd
 |-  ( ph -> ( ( 2nd ` T ) + 1 ) e. ZZ )
201 200 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) + 1 ) e. ZZ )
202 elfz
 |-  ( ( ( ( 2nd ` T ) + 1 ) e. ZZ /\ ( y + 1 ) e. ZZ /\ N e. ZZ ) -> ( ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) )
203 201 188 189 202 syl3anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) )
204 203 adantr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) <-> ( ( y + 1 ) <_ ( ( 2nd ` T ) + 1 ) /\ ( ( 2nd ` T ) + 1 ) <_ N ) ) )
205 198 199 204 mpbir2and
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) )
206 prssi
 |-  ( ( ( 2nd ` T ) e. ( ( y + 1 ) ... N ) /\ ( ( 2nd ` T ) + 1 ) e. ( ( y + 1 ) ... N ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) )
207 193 205 206 syl2anc
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) )
208 imass2
 |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) )
209 207 208 syl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) )
210 177 209 eqsstrrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) )
211 174 210 eqssd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } )
212 f1ofo
 |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -1-1-onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } )
213 forn
 |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } : { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } -onto-> { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } )
214 28 212 213 3syl
 |-  ( ph -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) } )
215 214 29 eqtrdi
 |-  ( ph -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
216 215 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
217 211 216 eqtrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
218 undif
 |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( ( y + 1 ) ... N ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( y + 1 ) ... N ) )
219 207 218 sylib
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( y + 1 ) ... N ) )
220 219 imaeq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) )
221 fnresi
 |-  ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) Fn ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
222 disjdifr
 |-  ( ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/)
223 fnimadisj
 |-  ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) Fn ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) /\ ( ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) )
224 221 222 223 mp2an
 |-  ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/)
225 224 a1i
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) )
226 nnuz
 |-  NN = ( ZZ>= ` 1 )
227 186 226 eleqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) )
228 fzss1
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
229 227 228 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
230 229 ssdifd
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
231 resiima
 |-  ( ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
232 230 231 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
233 232 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
234 225 233 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( (/) u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
235 imaundi
 |-  ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
236 uncom
 |-  ( (/) u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) )
237 un0
 |-  ( ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
238 236 237 eqtr2i
 |-  ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( (/) u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
239 234 235 238 3eqtr4g
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
240 220 239 eqtr3d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) = ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
241 217 240 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( y + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( y + 1 ) ... N ) ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
242 172 241 eqtrid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( ( y + 1 ) ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
243 242 219 eqtrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( y + 1 ) ... N ) )
244 243 imaeq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( y + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
245 171 244 eqtrid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
246 245 xpeq1d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) )
247 170 246 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) )
248 247 oveq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
249 iftrue
 |-  ( y < ( 2nd ` T ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = y )
250 249 csbeq1d
 |-  ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
251 vex
 |-  y e. _V
252 oveq2
 |-  ( j = y -> ( 1 ... j ) = ( 1 ... y ) )
253 252 imaeq2d
 |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) )
254 253 xpeq1d
 |-  ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) )
255 oveq1
 |-  ( j = y -> ( j + 1 ) = ( y + 1 ) )
256 255 oveq1d
 |-  ( j = y -> ( ( j + 1 ) ... N ) = ( ( y + 1 ) ... N ) )
257 256 imaeq2d
 |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) )
258 257 xpeq1d
 |-  ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) )
259 254 258 uneq12d
 |-  ( j = y -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) )
260 259 oveq2d
 |-  ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
261 251 260 csbie
 |-  [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) )
262 250 261 eqtrdi
 |-  ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
263 262 adantl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
264 249 csbeq1d
 |-  ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
265 252 imaeq2d
 |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) )
266 265 xpeq1d
 |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) )
267 256 imaeq2d
 |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
268 267 xpeq1d
 |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) )
269 266 268 uneq12d
 |-  ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) )
270 269 oveq2d
 |-  ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
271 251 270 csbie
 |-  [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) )
272 264 271 eqtrdi
 |-  ( y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
273 272 adantl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
274 248 263 273 3eqtr4d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
275 lenlt
 |-  ( ( ( 2nd ` T ) e. RR /\ y e. RR ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) )
276 20 116 275 syl2an
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) )
277 276 biimpar
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> ( 2nd ` T ) <_ y )
278 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) )
279 imaundir
 |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) )
280 imassrn
 |-  ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. }
281 280 a1i
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) C_ ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } )
282 176 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } )
283 19 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) e. NN )
284 20 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) e. RR )
285 116 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> y e. RR )
286 186 nnred
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. RR )
287 286 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( y + 1 ) e. RR )
288 simpr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) <_ y )
289 116 lep1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( y + 1 ) )
290 289 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> y <_ ( y + 1 ) )
291 284 285 287 288 290 letrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) <_ ( y + 1 ) )
292 fznn
 |-  ( ( y + 1 ) e. ZZ -> ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) <-> ( ( 2nd ` T ) e. NN /\ ( 2nd ` T ) <_ ( y + 1 ) ) ) )
293 187 292 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) <-> ( ( 2nd ` T ) e. NN /\ ( 2nd ` T ) <_ ( y + 1 ) ) ) )
294 293 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) <-> ( ( 2nd ` T ) e. NN /\ ( 2nd ` T ) <_ ( y + 1 ) ) ) )
295 283 291 294 mpbir2and
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) )
296 51 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) e. NN )
297 1red
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> 1 e. RR )
298 284 285 297 288 leadd1dd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) )
299 fznn
 |-  ( ( y + 1 ) e. ZZ -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) ) )
300 187 299 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) ) )
301 300 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) <-> ( ( ( 2nd ` T ) + 1 ) e. NN /\ ( ( 2nd ` T ) + 1 ) <_ ( y + 1 ) ) ) )
302 296 298 301 mpbir2and
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) )
303 prssi
 |-  ( ( ( 2nd ` T ) e. ( 1 ... ( y + 1 ) ) /\ ( ( 2nd ` T ) + 1 ) e. ( 1 ... ( y + 1 ) ) ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) )
304 295 302 303 syl2anc
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) )
305 imass2
 |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) )
306 304 305 syl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) )
307 282 306 eqsstrrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } C_ ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) )
308 281 307 eqssd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) = ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } )
309 215 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ran { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
310 308 309 eqtrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) = { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
311 undif
 |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } C_ ( 1 ... ( y + 1 ) ) <-> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... ( y + 1 ) ) )
312 304 311 sylib
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( 1 ... ( y + 1 ) ) )
313 312 imaeq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) )
314 224 a1i
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) )
315 eluzp1p1
 |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
316 150 315 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
317 316 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
318 149 317 eqeltrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) )
319 fzss2
 |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) )
320 318 319 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) )
321 320 ssdifd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
322 321 adantr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
323 resiima
 |-  ( ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
324 322 323 syl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
325 314 324 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( (/) u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
326 imaundi
 |-  ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
327 uncom
 |-  ( (/) u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) )
328 un0
 |-  ( ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) u. (/) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
329 327 328 eqtr2i
 |-  ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( (/) u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
330 325 326 329 3eqtr4g
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
331 313 330 eqtr3d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
332 310 331 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( 1 ... ( y + 1 ) ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( 1 ... ( y + 1 ) ) ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
333 279 332 eqtrid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } u. ( ( 1 ... ( y + 1 ) ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
334 333 312 eqtrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( 1 ... ( y + 1 ) ) )
335 334 imaeq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( 1 ... ( y + 1 ) ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) )
336 278 335 eqtrid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) )
337 336 xpeq1d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) )
338 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
339 112 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
340 incom
 |-  ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
341 126 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) e. RR )
342 186 peano2nnd
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. NN )
343 342 nnred
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. RR )
344 343 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( y + 1 ) + 1 ) e. RR )
345 21 ad2antrr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) < ( ( 2nd ` T ) + 1 ) )
346 116 ltp1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y < ( y + 1 ) )
347 346 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> y < ( y + 1 ) )
348 284 285 287 288 347 lelttrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) < ( y + 1 ) )
349 284 287 297 348 ltadd1dd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) )
350 284 341 344 345 349 lttrd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( 2nd ` T ) < ( ( y + 1 ) + 1 ) )
351 ltnle
 |-  ( ( ( 2nd ` T ) e. RR /\ ( ( y + 1 ) + 1 ) e. RR ) -> ( ( 2nd ` T ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) )
352 20 343 351 syl2an
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) )
353 352 adantr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` T ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) ) )
354 350 353 mpbid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) )
355 elfzle1
 |-  ( ( 2nd ` T ) e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( ( y + 1 ) + 1 ) <_ ( 2nd ` T ) )
356 354 355 nsyl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( 2nd ` T ) e. ( ( ( y + 1 ) + 1 ) ... N ) )
357 disjsn
 |-  ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) = (/) <-> -. ( 2nd ` T ) e. ( ( ( y + 1 ) + 1 ) ... N ) )
358 356 357 sylibr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) = (/) )
359 ltnle
 |-  ( ( ( ( 2nd ` T ) + 1 ) e. RR /\ ( ( y + 1 ) + 1 ) e. RR ) -> ( ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) )
360 126 343 359 syl2an
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) )
361 360 adantr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` T ) + 1 ) < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) ) )
362 349 361 mpbid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) )
363 elfzle1
 |-  ( ( ( 2nd ` T ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( ( y + 1 ) + 1 ) <_ ( ( 2nd ` T ) + 1 ) )
364 362 363 nsyl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> -. ( ( 2nd ` T ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) )
365 disjsn
 |-  ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) <-> -. ( ( 2nd ` T ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) )
366 364 365 sylibr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) = (/) )
367 358 366 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) u. ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( (/) u. (/) ) )
368 140 ineq2i
 |-  ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = ( ( ( ( y + 1 ) + 1 ) ... N ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) )
369 indi
 |-  ( ( ( ( y + 1 ) + 1 ) ... N ) i^i ( { ( 2nd ` T ) } u. { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) u. ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) )
370 368 369 eqtr2i
 |-  ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) } ) u. ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( ( 2nd ` T ) + 1 ) } ) ) = ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } )
371 367 370 144 3eqtr3g
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) )
372 340 371 eqtrid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) )
373 fnimadisj
 |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } Fn { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } /\ ( { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) )
374 339 372 373 syl2anc
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) )
375 342 226 eleqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
376 fzss1
 |-  ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) )
377 reldisj
 |-  ( ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
378 375 376 377 3syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
379 378 ad2antlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( ( y + 1 ) + 1 ) ... N ) i^i { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) = (/) <-> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) )
380 371 379 mpbid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) )
381 resiima
 |-  ( ( ( ( y + 1 ) + 1 ) ... N ) C_ ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) + 1 ) ... N ) )
382 380 381 syl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) + 1 ) ... N ) )
383 374 382 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( (/) u. ( ( ( y + 1 ) + 1 ) ... N ) ) )
384 imaundir
 |-  ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } " ( ( ( y + 1 ) + 1 ) ... N ) ) u. ( ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
385 uncom
 |-  ( (/) u. ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( ( y + 1 ) + 1 ) ... N ) u. (/) )
386 un0
 |-  ( ( ( ( y + 1 ) + 1 ) ... N ) u. (/) ) = ( ( ( y + 1 ) + 1 ) ... N )
387 385 386 eqtr2i
 |-  ( ( ( y + 1 ) + 1 ) ... N ) = ( (/) u. ( ( ( y + 1 ) + 1 ) ... N ) )
388 383 384 387 3eqtr4g
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) + 1 ) ... N ) )
389 388 imaeq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
390 338 389 eqtrid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
391 390 xpeq1d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) )
392 337 391 uneq12d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) <_ y ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
393 277 392 syldan
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
394 393 oveq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
395 iffalse
 |-  ( -. y < ( 2nd ` T ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = ( y + 1 ) )
396 395 csbeq1d
 |-  ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
397 ovex
 |-  ( y + 1 ) e. _V
398 oveq2
 |-  ( j = ( y + 1 ) -> ( 1 ... j ) = ( 1 ... ( y + 1 ) ) )
399 398 imaeq2d
 |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) )
400 399 xpeq1d
 |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) )
401 oveq1
 |-  ( j = ( y + 1 ) -> ( j + 1 ) = ( ( y + 1 ) + 1 ) )
402 401 oveq1d
 |-  ( j = ( y + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( y + 1 ) + 1 ) ... N ) )
403 402 imaeq2d
 |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
404 403 xpeq1d
 |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) )
405 400 404 uneq12d
 |-  ( j = ( y + 1 ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
406 405 oveq2d
 |-  ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
407 397 406 csbie
 |-  [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
408 396 407 eqtrdi
 |-  ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
409 408 adantl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
410 395 csbeq1d
 |-  ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
411 398 imaeq2d
 |-  ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) )
412 411 xpeq1d
 |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) )
413 402 imaeq2d
 |-  ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
414 413 xpeq1d
 |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) )
415 412 414 uneq12d
 |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
416 415 oveq2d
 |-  ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
417 397 416 csbie
 |-  [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
418 410 417 eqtrdi
 |-  ( -. y < ( 2nd ` T ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
419 418 adantl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
420 394 409 419 3eqtr4d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ -. y < ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
421 274 420 pm2.61dan
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
422 421 mpteq2dva
 |-  ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
423 109 422 eqtr4d
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
424 opex
 |-  <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. e. _V
425 424 24 op1std
 |-  ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. )
426 424 24 op2ndd
 |-  ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( 2nd ` t ) = ( 2nd ` T ) )
427 breq2
 |-  ( ( 2nd ` t ) = ( 2nd ` T ) -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) )
428 427 ifbid
 |-  ( ( 2nd ` t ) = ( 2nd ` T ) -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) )
429 428 csbeq1d
 |-  ( ( 2nd ` t ) = ( 2nd ` T ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
430 fvex
 |-  ( 1st ` ( 1st ` T ) ) e. _V
431 430 80 op1std
 |-  ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) )
432 430 80 op2ndd
 |-  ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) )
433 id
 |-  ( ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) )
434 imaeq1
 |-  ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) )
435 434 xpeq1d
 |-  ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) )
436 imaeq1
 |-  ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) )
437 436 xpeq1d
 |-  ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
438 435 437 uneq12d
 |-  ( ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
439 433 438 oveqan12d
 |-  ( ( ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) /\ ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) ) -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
440 431 432 439 syl2anc
 |-  ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
441 440 csbeq2dv
 |-  ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
442 429 441 sylan9eqr
 |-  ( ( ( 1st ` t ) = <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. /\ ( 2nd ` t ) = ( 2nd ` T ) ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
443 425 426 442 syl2anc
 |-  ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
444 443 mpteq2dv
 |-  ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
445 444 eqeq2d
 |-  ( t = <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
446 445 2 elrab2
 |-  ( <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. S <-> ( <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
447 90 423 446 sylanbrc
 |-  ( ph -> <. <. ( 1st ` ( 1st ` T ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( { <. ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) >. , <. ( ( 2nd ` T ) + 1 ) , ( 2nd ` T ) >. } u. ( _I |` ( ( 1 ... N ) \ { ( 2nd ` T ) , ( ( 2nd ` T ) + 1 ) } ) ) ) ) >. , ( 2nd ` T ) >. e. S )