Metamath Proof Explorer


Theorem poimirlem15

Description: Lemma for poimir , that the face in poimirlem22 is a face. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
poimirlem22.1 φ F : 0 N 1 0 K 1 N
poimirlem22.2 φ T S
poimirlem15.3 φ 2 nd T 1 N 1
Assertion poimirlem15 φ 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T S

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
3 poimirlem22.1 φ F : 0 N 1 0 K 1 N
4 poimirlem22.2 φ T S
5 poimirlem15.3 φ 2 nd T 1 N 1
6 elrabi T t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
7 6 2 eleq2s T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
8 4 7 syl φ T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
9 xp1st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
10 xp1st 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st 1 st T 0 ..^ K 1 N
11 8 9 10 3syl φ 1 st 1 st T 0 ..^ K 1 N
12 xp2nd 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
13 8 9 12 3syl φ 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
14 fvex 2 nd 1 st T V
15 f1oeq1 f = 2 nd 1 st T f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
16 14 15 elab 2 nd 1 st T f | f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
17 13 16 sylib φ 2 nd 1 st T : 1 N 1-1 onto 1 N
18 elfznn 2 nd T 1 N 1 2 nd T
19 5 18 syl φ 2 nd T
20 19 nnred φ 2 nd T
21 20 ltp1d φ 2 nd T < 2 nd T + 1
22 20 21 ltned φ 2 nd T 2 nd T + 1
23 22 necomd φ 2 nd T + 1 2 nd T
24 fvex 2 nd T V
25 ovex 2 nd T + 1 V
26 f1oprg 2 nd T V 2 nd T + 1 V 2 nd T + 1 V 2 nd T V 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T + 1 2 nd T
27 24 25 25 24 26 mp4an 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T + 1 2 nd T
28 22 23 27 syl2anc φ 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T + 1 2 nd T
29 prcom 2 nd T + 1 2 nd T = 2 nd T 2 nd T + 1
30 f1oeq3 2 nd T + 1 2 nd T = 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1
31 29 30 ax-mp 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1
32 28 31 sylib φ 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1
33 f1oi I 1 N 2 nd T 2 nd T + 1 : 1 N 2 nd T 2 nd T + 1 1-1 onto 1 N 2 nd T 2 nd T + 1
34 disjdif 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 =
35 f1oun 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 : 1 N 2 nd T 2 nd T + 1 1-1 onto 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 = 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
36 34 34 35 mpanr12 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 : 1 N 2 nd T 2 nd T + 1 1-1 onto 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
37 32 33 36 sylancl φ 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
38 1 nncnd φ N
39 npcan1 N N - 1 + 1 = N
40 38 39 syl φ N - 1 + 1 = N
41 1 nnzd φ N
42 peano2zm N N 1
43 41 42 syl φ N 1
44 uzid N 1 N 1 N 1
45 peano2uz N 1 N 1 N - 1 + 1 N 1
46 43 44 45 3syl φ N - 1 + 1 N 1
47 40 46 eqeltrrd φ N N 1
48 fzss2 N N 1 1 N 1 1 N
49 47 48 syl φ 1 N 1 1 N
50 49 5 sseldd φ 2 nd T 1 N
51 19 peano2nnd φ 2 nd T + 1
52 43 zred φ N 1
53 1 nnred φ N
54 elfzle2 2 nd T 1 N 1 2 nd T N 1
55 5 54 syl φ 2 nd T N 1
56 53 ltm1d φ N 1 < N
57 20 52 53 55 56 lelttrd φ 2 nd T < N
58 19 nnzd φ 2 nd T
59 zltp1le 2 nd T N 2 nd T < N 2 nd T + 1 N
60 58 41 59 syl2anc φ 2 nd T < N 2 nd T + 1 N
61 57 60 mpbid φ 2 nd T + 1 N
62 fznn N 2 nd T + 1 1 N 2 nd T + 1 2 nd T + 1 N
63 41 62 syl φ 2 nd T + 1 1 N 2 nd T + 1 2 nd T + 1 N
64 51 61 63 mpbir2and φ 2 nd T + 1 1 N
65 prssi 2 nd T 1 N 2 nd T + 1 1 N 2 nd T 2 nd T + 1 1 N
66 50 64 65 syl2anc φ 2 nd T 2 nd T + 1 1 N
67 undif 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 = 1 N
68 66 67 sylib φ 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 = 1 N
69 f1oeq23 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 = 1 N 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 = 1 N 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 1-1 onto 1 N
70 68 68 69 syl2anc φ 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 1-1 onto 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 1-1 onto 1 N
71 37 70 mpbid φ 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 1-1 onto 1 N
72 f1oco 2 nd 1 st T : 1 N 1-1 onto 1 N 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 1-1 onto 1 N 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 1-1 onto 1 N
73 17 71 72 syl2anc φ 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 1-1 onto 1 N
74 prex 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T V
75 ovex 1 N V
76 difexg 1 N V 1 N 2 nd T 2 nd T + 1 V
77 resiexg 1 N 2 nd T 2 nd T + 1 V I 1 N 2 nd T 2 nd T + 1 V
78 75 76 77 mp2b I 1 N 2 nd T 2 nd T + 1 V
79 74 78 unex 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 V
80 14 79 coex 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 V
81 f1oeq1 f = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 f : 1 N 1-1 onto 1 N 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 1-1 onto 1 N
82 80 81 elab 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 f | f : 1 N 1-1 onto 1 N 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 : 1 N 1-1 onto 1 N
83 73 82 sylibr φ 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 f | f : 1 N 1-1 onto 1 N
84 opelxpi 1 st 1 st T 0 ..^ K 1 N 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 f | f : 1 N 1-1 onto 1 N 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
85 11 83 84 syl2anc φ 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
86 fz1ssfz0 1 N 0 N
87 49 86 sstrdi φ 1 N 1 0 N
88 87 5 sseldd φ 2 nd T 0 N
89 opelxpi 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd T 0 N 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
90 85 88 89 syl2anc φ 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
91 fveq2 t = T 2 nd t = 2 nd T
92 91 breq2d t = T y < 2 nd t y < 2 nd T
93 92 ifbid t = T if y < 2 nd t y y + 1 = if y < 2 nd T y y + 1
94 93 csbeq1d t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
95 2fveq3 t = T 1 st 1 st t = 1 st 1 st T
96 2fveq3 t = T 2 nd 1 st t = 2 nd 1 st T
97 96 imaeq1d t = T 2 nd 1 st t 1 j = 2 nd 1 st T 1 j
98 97 xpeq1d t = T 2 nd 1 st t 1 j × 1 = 2 nd 1 st T 1 j × 1
99 96 imaeq1d t = T 2 nd 1 st t j + 1 N = 2 nd 1 st T j + 1 N
100 99 xpeq1d t = T 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T j + 1 N × 0
101 98 100 uneq12d t = T 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
102 95 101 oveq12d t = T 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
103 102 csbeq2dv t = T if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
104 94 103 eqtrd t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
105 104 mpteq2dv t = T y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
106 105 eqeq2d t = T F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
107 106 2 elrab2 T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
108 107 simprbi T S F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
109 4 108 syl φ F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
110 imaco 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y
111 f1ofn 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1
112 28 111 syl φ 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1
113 112 ad2antrr φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1
114 incom 2 nd T 2 nd T + 1 1 y = 1 y 2 nd T 2 nd T + 1
115 elfznn0 y 0 N 1 y 0
116 115 nn0red y 0 N 1 y
117 ltnle y 2 nd T y < 2 nd T ¬ 2 nd T y
118 116 20 117 syl2anr φ y 0 N 1 y < 2 nd T ¬ 2 nd T y
119 118 biimpa φ y 0 N 1 y < 2 nd T ¬ 2 nd T y
120 elfzle2 2 nd T 1 y 2 nd T y
121 119 120 nsyl φ y 0 N 1 y < 2 nd T ¬ 2 nd T 1 y
122 disjsn 1 y 2 nd T = ¬ 2 nd T 1 y
123 121 122 sylibr φ y 0 N 1 y < 2 nd T 1 y 2 nd T =
124 116 ad2antlr φ y 0 N 1 y < 2 nd T y
125 20 ad2antrr φ y 0 N 1 y < 2 nd T 2 nd T
126 51 nnred φ 2 nd T + 1
127 126 ad2antrr φ y 0 N 1 y < 2 nd T 2 nd T + 1
128 simpr φ y 0 N 1 y < 2 nd T y < 2 nd T
129 21 ad2antrr φ y 0 N 1 y < 2 nd T 2 nd T < 2 nd T + 1
130 124 125 127 128 129 lttrd φ y 0 N 1 y < 2 nd T y < 2 nd T + 1
131 ltnle y 2 nd T + 1 y < 2 nd T + 1 ¬ 2 nd T + 1 y
132 116 126 131 syl2anr φ y 0 N 1 y < 2 nd T + 1 ¬ 2 nd T + 1 y
133 132 adantr φ y 0 N 1 y < 2 nd T y < 2 nd T + 1 ¬ 2 nd T + 1 y
134 130 133 mpbid φ y 0 N 1 y < 2 nd T ¬ 2 nd T + 1 y
135 elfzle2 2 nd T + 1 1 y 2 nd T + 1 y
136 134 135 nsyl φ y 0 N 1 y < 2 nd T ¬ 2 nd T + 1 1 y
137 disjsn 1 y 2 nd T + 1 = ¬ 2 nd T + 1 1 y
138 136 137 sylibr φ y 0 N 1 y < 2 nd T 1 y 2 nd T + 1 =
139 123 138 uneq12d φ y 0 N 1 y < 2 nd T 1 y 2 nd T 1 y 2 nd T + 1 =
140 df-pr 2 nd T 2 nd T + 1 = 2 nd T 2 nd T + 1
141 140 ineq2i 1 y 2 nd T 2 nd T + 1 = 1 y 2 nd T 2 nd T + 1
142 indi 1 y 2 nd T 2 nd T + 1 = 1 y 2 nd T 1 y 2 nd T + 1
143 141 142 eqtr2i 1 y 2 nd T 1 y 2 nd T + 1 = 1 y 2 nd T 2 nd T + 1
144 un0 =
145 139 143 144 3eqtr3g φ y 0 N 1 y < 2 nd T 1 y 2 nd T 2 nd T + 1 =
146 114 145 eqtrid φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 1 y =
147 fnimadisj 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 1 y = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y =
148 113 146 147 syl2anc φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y =
149 40 adantr φ y 0 N 1 N - 1 + 1 = N
150 elfzuz3 y 0 N 1 N 1 y
151 peano2uz N 1 y N - 1 + 1 y
152 150 151 syl y 0 N 1 N - 1 + 1 y
153 152 adantl φ y 0 N 1 N - 1 + 1 y
154 149 153 eqeltrrd φ y 0 N 1 N y
155 fzss2 N y 1 y 1 N
156 reldisj 1 y 1 N 1 y 2 nd T 2 nd T + 1 = 1 y 1 N 2 nd T 2 nd T + 1
157 154 155 156 3syl φ y 0 N 1 1 y 2 nd T 2 nd T + 1 = 1 y 1 N 2 nd T 2 nd T + 1
158 157 adantr φ y 0 N 1 y < 2 nd T 1 y 2 nd T 2 nd T + 1 = 1 y 1 N 2 nd T 2 nd T + 1
159 145 158 mpbid φ y 0 N 1 y < 2 nd T 1 y 1 N 2 nd T 2 nd T + 1
160 resiima 1 y 1 N 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 1 y = 1 y
161 159 160 syl φ y 0 N 1 y < 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y = 1 y
162 148 161 uneq12d φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y I 1 N 2 nd T 2 nd T + 1 1 y = 1 y
163 imaundir 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y I 1 N 2 nd T 2 nd T + 1 1 y
164 uncom 1 y = 1 y
165 un0 1 y = 1 y
166 164 165 eqtr2i 1 y = 1 y
167 162 163 166 3eqtr4g φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y = 1 y
168 167 imaeq2d φ y 0 N 1 y < 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y = 2 nd 1 st T 1 y
169 110 168 eqtrid φ y 0 N 1 y < 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y = 2 nd 1 st T 1 y
170 169 xpeq1d φ y 0 N 1 y < 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y × 1 = 2 nd 1 st T 1 y × 1
171 imaco 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N
172 imaundir 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 N I 1 N 2 nd T 2 nd T + 1 y + 1 N
173 imassrn 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 N ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
174 173 a1i φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 N ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
175 fnima 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 = ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
176 28 111 175 3syl φ 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 = ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
177 176 ad2antrr φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 = ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
178 elfzelz y 0 N 1 y
179 zltp1le y 2 nd T y < 2 nd T y + 1 2 nd T
180 178 58 179 syl2anr φ y 0 N 1 y < 2 nd T y + 1 2 nd T
181 180 biimpa φ y 0 N 1 y < 2 nd T y + 1 2 nd T
182 20 53 57 ltled φ 2 nd T N
183 182 ad2antrr φ y 0 N 1 y < 2 nd T 2 nd T N
184 58 adantr φ y 0 N 1 2 nd T
185 nn0p1nn y 0 y + 1
186 115 185 syl y 0 N 1 y + 1
187 186 nnzd y 0 N 1 y + 1
188 187 adantl φ y 0 N 1 y + 1
189 41 adantr φ y 0 N 1 N
190 elfz 2 nd T y + 1 N 2 nd T y + 1 N y + 1 2 nd T 2 nd T N
191 184 188 189 190 syl3anc φ y 0 N 1 2 nd T y + 1 N y + 1 2 nd T 2 nd T N
192 191 adantr φ y 0 N 1 y < 2 nd T 2 nd T y + 1 N y + 1 2 nd T 2 nd T N
193 181 183 192 mpbir2and φ y 0 N 1 y < 2 nd T 2 nd T y + 1 N
194 1red φ y 0 N 1 y < 2 nd T 1
195 ltle y 2 nd T y < 2 nd T y 2 nd T
196 116 20 195 syl2anr φ y 0 N 1 y < 2 nd T y 2 nd T
197 196 imp φ y 0 N 1 y < 2 nd T y 2 nd T
198 124 125 194 197 leadd1dd φ y 0 N 1 y < 2 nd T y + 1 2 nd T + 1
199 61 ad2antrr φ y 0 N 1 y < 2 nd T 2 nd T + 1 N
200 58 peano2zd φ 2 nd T + 1
201 200 adantr φ y 0 N 1 2 nd T + 1
202 elfz 2 nd T + 1 y + 1 N 2 nd T + 1 y + 1 N y + 1 2 nd T + 1 2 nd T + 1 N
203 201 188 189 202 syl3anc φ y 0 N 1 2 nd T + 1 y + 1 N y + 1 2 nd T + 1 2 nd T + 1 N
204 203 adantr φ y 0 N 1 y < 2 nd T 2 nd T + 1 y + 1 N y + 1 2 nd T + 1 2 nd T + 1 N
205 198 199 204 mpbir2and φ y 0 N 1 y < 2 nd T 2 nd T + 1 y + 1 N
206 prssi 2 nd T y + 1 N 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 y + 1 N
207 193 205 206 syl2anc φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 y + 1 N
208 imass2 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 N
209 207 208 syl φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 N
210 177 209 eqsstrrd φ y 0 N 1 y < 2 nd T ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 N
211 174 210 eqssd φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 N = ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
212 f1ofo 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 1-1 onto 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 onto 2 nd T + 1 2 nd T
213 forn 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T : 2 nd T 2 nd T + 1 onto 2 nd T + 1 2 nd T ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T = 2 nd T + 1 2 nd T
214 28 212 213 3syl φ ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T = 2 nd T + 1 2 nd T
215 214 29 eqtrdi φ ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T = 2 nd T 2 nd T + 1
216 215 ad2antrr φ y 0 N 1 y < 2 nd T ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T = 2 nd T 2 nd T + 1
217 211 216 eqtrd φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 N = 2 nd T 2 nd T + 1
218 undif 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 = y + 1 N
219 207 218 sylib φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 = y + 1 N
220 219 imaeq2d φ y 0 N 1 y < 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 = I 1 N 2 nd T 2 nd T + 1 y + 1 N
221 fnresi I 1 N 2 nd T 2 nd T + 1 Fn 1 N 2 nd T 2 nd T + 1
222 disjdifr 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 =
223 fnimadisj I 1 N 2 nd T 2 nd T + 1 Fn 1 N 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 = I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 =
224 221 222 223 mp2an I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 =
225 224 a1i φ y 0 N 1 y < 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 =
226 nnuz = 1
227 186 226 eleqtrdi y 0 N 1 y + 1 1
228 fzss1 y + 1 1 y + 1 N 1 N
229 227 228 syl y 0 N 1 y + 1 N 1 N
230 229 ssdifd y 0 N 1 y + 1 N 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
231 resiima y + 1 N 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 = y + 1 N 2 nd T 2 nd T + 1
232 230 231 syl y 0 N 1 I 1 N 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 = y + 1 N 2 nd T 2 nd T + 1
233 232 ad2antlr φ y 0 N 1 y < 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 = y + 1 N 2 nd T 2 nd T + 1
234 225 233 uneq12d φ y 0 N 1 y < 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 = y + 1 N 2 nd T 2 nd T + 1
235 imaundi I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 = I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1
236 uncom y + 1 N 2 nd T 2 nd T + 1 = y + 1 N 2 nd T 2 nd T + 1
237 un0 y + 1 N 2 nd T 2 nd T + 1 = y + 1 N 2 nd T 2 nd T + 1
238 236 237 eqtr2i y + 1 N 2 nd T 2 nd T + 1 = y + 1 N 2 nd T 2 nd T + 1
239 234 235 238 3eqtr4g φ y 0 N 1 y < 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1 = y + 1 N 2 nd T 2 nd T + 1
240 220 239 eqtr3d φ y 0 N 1 y < 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N = y + 1 N 2 nd T 2 nd T + 1
241 217 240 uneq12d φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 N I 1 N 2 nd T 2 nd T + 1 y + 1 N = 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1
242 172 241 eqtrid φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N = 2 nd T 2 nd T + 1 y + 1 N 2 nd T 2 nd T + 1
243 242 219 eqtrd φ y 0 N 1 y < 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N = y + 1 N
244 243 imaeq2d φ y 0 N 1 y < 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N = 2 nd 1 st T y + 1 N
245 171 244 eqtrid φ y 0 N 1 y < 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N = 2 nd 1 st T y + 1 N
246 245 xpeq1d φ y 0 N 1 y < 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N × 0 = 2 nd 1 st T y + 1 N × 0
247 170 246 uneq12d φ y 0 N 1 y < 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N × 0 = 2 nd 1 st T 1 y × 1 2 nd 1 st T y + 1 N × 0
248 247 oveq2d φ y 0 N 1 y < 2 nd T 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y × 1 2 nd 1 st T y + 1 N × 0
249 iftrue y < 2 nd T if y < 2 nd T y y + 1 = y
250 249 csbeq1d y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = y / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
251 vex y V
252 oveq2 j = y 1 j = 1 y
253 252 imaeq2d j = y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y
254 253 xpeq1d j = y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y × 1
255 oveq1 j = y j + 1 = y + 1
256 255 oveq1d j = y j + 1 N = y + 1 N
257 256 imaeq2d j = y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N
258 257 xpeq1d j = y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N × 0
259 254 258 uneq12d j = y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N × 0
260 259 oveq2d j = y 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N × 0
261 251 260 csbie y / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N × 0
262 250 261 eqtrdi y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N × 0
263 262 adantl φ y 0 N 1 y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 N × 0
264 249 csbeq1d y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = y / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
265 252 imaeq2d j = y 2 nd 1 st T 1 j = 2 nd 1 st T 1 y
266 265 xpeq1d j = y 2 nd 1 st T 1 j × 1 = 2 nd 1 st T 1 y × 1
267 256 imaeq2d j = y 2 nd 1 st T j + 1 N = 2 nd 1 st T y + 1 N
268 267 xpeq1d j = y 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T y + 1 N × 0
269 266 268 uneq12d j = y 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T 1 y × 1 2 nd 1 st T y + 1 N × 0
270 269 oveq2d j = y 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y × 1 2 nd 1 st T y + 1 N × 0
271 251 270 csbie y / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y × 1 2 nd 1 st T y + 1 N × 0
272 264 271 eqtrdi y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y × 1 2 nd 1 st T y + 1 N × 0
273 272 adantl φ y 0 N 1 y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y × 1 2 nd 1 st T y + 1 N × 0
274 248 263 273 3eqtr4d φ y 0 N 1 y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
275 lenlt 2 nd T y 2 nd T y ¬ y < 2 nd T
276 20 116 275 syl2an φ y 0 N 1 2 nd T y ¬ y < 2 nd T
277 276 biimpar φ y 0 N 1 ¬ y < 2 nd T 2 nd T y
278 imaco 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1
279 imaundir 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y + 1 I 1 N 2 nd T 2 nd T + 1 1 y + 1
280 imassrn 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y + 1 ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
281 280 a1i φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y + 1 ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
282 176 ad2antrr φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 = ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
283 19 ad2antrr φ y 0 N 1 2 nd T y 2 nd T
284 20 ad2antrr φ y 0 N 1 2 nd T y 2 nd T
285 116 ad2antlr φ y 0 N 1 2 nd T y y
286 186 nnred y 0 N 1 y + 1
287 286 ad2antlr φ y 0 N 1 2 nd T y y + 1
288 simpr φ y 0 N 1 2 nd T y 2 nd T y
289 116 lep1d y 0 N 1 y y + 1
290 289 ad2antlr φ y 0 N 1 2 nd T y y y + 1
291 284 285 287 288 290 letrd φ y 0 N 1 2 nd T y 2 nd T y + 1
292 fznn y + 1 2 nd T 1 y + 1 2 nd T 2 nd T y + 1
293 187 292 syl y 0 N 1 2 nd T 1 y + 1 2 nd T 2 nd T y + 1
294 293 ad2antlr φ y 0 N 1 2 nd T y 2 nd T 1 y + 1 2 nd T 2 nd T y + 1
295 283 291 294 mpbir2and φ y 0 N 1 2 nd T y 2 nd T 1 y + 1
296 51 ad2antrr φ y 0 N 1 2 nd T y 2 nd T + 1
297 1red φ y 0 N 1 2 nd T y 1
298 284 285 297 288 leadd1dd φ y 0 N 1 2 nd T y 2 nd T + 1 y + 1
299 fznn y + 1 2 nd T + 1 1 y + 1 2 nd T + 1 2 nd T + 1 y + 1
300 187 299 syl y 0 N 1 2 nd T + 1 1 y + 1 2 nd T + 1 2 nd T + 1 y + 1
301 300 ad2antlr φ y 0 N 1 2 nd T y 2 nd T + 1 1 y + 1 2 nd T + 1 2 nd T + 1 y + 1
302 296 298 301 mpbir2and φ y 0 N 1 2 nd T y 2 nd T + 1 1 y + 1
303 prssi 2 nd T 1 y + 1 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 1 y + 1
304 295 302 303 syl2anc φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 1 y + 1
305 imass2 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y + 1
306 304 305 syl φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y + 1
307 282 306 eqsstrrd φ y 0 N 1 2 nd T y ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y + 1
308 281 307 eqssd φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y + 1 = ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T
309 215 ad2antrr φ y 0 N 1 2 nd T y ran 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T = 2 nd T 2 nd T + 1
310 308 309 eqtrd φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y + 1 = 2 nd T 2 nd T + 1
311 undif 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 = 1 y + 1
312 304 311 sylib φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 = 1 y + 1
313 312 imaeq2d φ y 0 N 1 2 nd T y I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 = I 1 N 2 nd T 2 nd T + 1 1 y + 1
314 224 a1i φ y 0 N 1 2 nd T y I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 =
315 eluzp1p1 N 1 y N - 1 + 1 y + 1
316 150 315 syl y 0 N 1 N - 1 + 1 y + 1
317 316 adantl φ y 0 N 1 N - 1 + 1 y + 1
318 149 317 eqeltrrd φ y 0 N 1 N y + 1
319 fzss2 N y + 1 1 y + 1 1 N
320 318 319 syl φ y 0 N 1 1 y + 1 1 N
321 320 ssdifd φ y 0 N 1 1 y + 1 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
322 321 adantr φ y 0 N 1 2 nd T y 1 y + 1 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1
323 resiima 1 y + 1 2 nd T 2 nd T + 1 1 N 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 = 1 y + 1 2 nd T 2 nd T + 1
324 322 323 syl φ y 0 N 1 2 nd T y I 1 N 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 = 1 y + 1 2 nd T 2 nd T + 1
325 314 324 uneq12d φ y 0 N 1 2 nd T y I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 = 1 y + 1 2 nd T 2 nd T + 1
326 imaundi I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 = I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1
327 uncom 1 y + 1 2 nd T 2 nd T + 1 = 1 y + 1 2 nd T 2 nd T + 1
328 un0 1 y + 1 2 nd T 2 nd T + 1 = 1 y + 1 2 nd T 2 nd T + 1
329 327 328 eqtr2i 1 y + 1 2 nd T 2 nd T + 1 = 1 y + 1 2 nd T 2 nd T + 1
330 325 326 329 3eqtr4g φ y 0 N 1 2 nd T y I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1 = 1 y + 1 2 nd T 2 nd T + 1
331 313 330 eqtr3d φ y 0 N 1 2 nd T y I 1 N 2 nd T 2 nd T + 1 1 y + 1 = 1 y + 1 2 nd T 2 nd T + 1
332 310 331 uneq12d φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T 1 y + 1 I 1 N 2 nd T 2 nd T + 1 1 y + 1 = 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1
333 279 332 eqtrid φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 = 2 nd T 2 nd T + 1 1 y + 1 2 nd T 2 nd T + 1
334 333 312 eqtrd φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 = 1 y + 1
335 334 imaeq2d φ y 0 N 1 2 nd T y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 = 2 nd 1 st T 1 y + 1
336 278 335 eqtrid φ y 0 N 1 2 nd T y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 = 2 nd 1 st T 1 y + 1
337 336 xpeq1d φ y 0 N 1 2 nd T y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1 = 2 nd 1 st T 1 y + 1 × 1
338 imaco 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N
339 112 ad2antrr φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1
340 incom 2 nd T 2 nd T + 1 y + 1 + 1 N = y + 1 + 1 N 2 nd T 2 nd T + 1
341 126 ad2antrr φ y 0 N 1 2 nd T y 2 nd T + 1
342 186 peano2nnd y 0 N 1 y + 1 + 1
343 342 nnred y 0 N 1 y + 1 + 1
344 343 ad2antlr φ y 0 N 1 2 nd T y y + 1 + 1
345 21 ad2antrr φ y 0 N 1 2 nd T y 2 nd T < 2 nd T + 1
346 116 ltp1d y 0 N 1 y < y + 1
347 346 ad2antlr φ y 0 N 1 2 nd T y y < y + 1
348 284 285 287 288 347 lelttrd φ y 0 N 1 2 nd T y 2 nd T < y + 1
349 284 287 297 348 ltadd1dd φ y 0 N 1 2 nd T y 2 nd T + 1 < y + 1 + 1
350 284 341 344 345 349 lttrd φ y 0 N 1 2 nd T y 2 nd T < y + 1 + 1
351 ltnle 2 nd T y + 1 + 1 2 nd T < y + 1 + 1 ¬ y + 1 + 1 2 nd T
352 20 343 351 syl2an φ y 0 N 1 2 nd T < y + 1 + 1 ¬ y + 1 + 1 2 nd T
353 352 adantr φ y 0 N 1 2 nd T y 2 nd T < y + 1 + 1 ¬ y + 1 + 1 2 nd T
354 350 353 mpbid φ y 0 N 1 2 nd T y ¬ y + 1 + 1 2 nd T
355 elfzle1 2 nd T y + 1 + 1 N y + 1 + 1 2 nd T
356 354 355 nsyl φ y 0 N 1 2 nd T y ¬ 2 nd T y + 1 + 1 N
357 disjsn y + 1 + 1 N 2 nd T = ¬ 2 nd T y + 1 + 1 N
358 356 357 sylibr φ y 0 N 1 2 nd T y y + 1 + 1 N 2 nd T =
359 ltnle 2 nd T + 1 y + 1 + 1 2 nd T + 1 < y + 1 + 1 ¬ y + 1 + 1 2 nd T + 1
360 126 343 359 syl2an φ y 0 N 1 2 nd T + 1 < y + 1 + 1 ¬ y + 1 + 1 2 nd T + 1
361 360 adantr φ y 0 N 1 2 nd T y 2 nd T + 1 < y + 1 + 1 ¬ y + 1 + 1 2 nd T + 1
362 349 361 mpbid φ y 0 N 1 2 nd T y ¬ y + 1 + 1 2 nd T + 1
363 elfzle1 2 nd T + 1 y + 1 + 1 N y + 1 + 1 2 nd T + 1
364 362 363 nsyl φ y 0 N 1 2 nd T y ¬ 2 nd T + 1 y + 1 + 1 N
365 disjsn y + 1 + 1 N 2 nd T + 1 = ¬ 2 nd T + 1 y + 1 + 1 N
366 364 365 sylibr φ y 0 N 1 2 nd T y y + 1 + 1 N 2 nd T + 1 =
367 358 366 uneq12d φ y 0 N 1 2 nd T y y + 1 + 1 N 2 nd T y + 1 + 1 N 2 nd T + 1 =
368 140 ineq2i y + 1 + 1 N 2 nd T 2 nd T + 1 = y + 1 + 1 N 2 nd T 2 nd T + 1
369 indi y + 1 + 1 N 2 nd T 2 nd T + 1 = y + 1 + 1 N 2 nd T y + 1 + 1 N 2 nd T + 1
370 368 369 eqtr2i y + 1 + 1 N 2 nd T y + 1 + 1 N 2 nd T + 1 = y + 1 + 1 N 2 nd T 2 nd T + 1
371 367 370 144 3eqtr3g φ y 0 N 1 2 nd T y y + 1 + 1 N 2 nd T 2 nd T + 1 =
372 340 371 eqtrid φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 y + 1 + 1 N =
373 fnimadisj 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T Fn 2 nd T 2 nd T + 1 2 nd T 2 nd T + 1 y + 1 + 1 N = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 + 1 N =
374 339 372 373 syl2anc φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 + 1 N =
375 342 226 eleqtrdi y 0 N 1 y + 1 + 1 1
376 fzss1 y + 1 + 1 1 y + 1 + 1 N 1 N
377 reldisj y + 1 + 1 N 1 N y + 1 + 1 N 2 nd T 2 nd T + 1 = y + 1 + 1 N 1 N 2 nd T 2 nd T + 1
378 375 376 377 3syl y 0 N 1 y + 1 + 1 N 2 nd T 2 nd T + 1 = y + 1 + 1 N 1 N 2 nd T 2 nd T + 1
379 378 ad2antlr φ y 0 N 1 2 nd T y y + 1 + 1 N 2 nd T 2 nd T + 1 = y + 1 + 1 N 1 N 2 nd T 2 nd T + 1
380 371 379 mpbid φ y 0 N 1 2 nd T y y + 1 + 1 N 1 N 2 nd T 2 nd T + 1
381 resiima y + 1 + 1 N 1 N 2 nd T 2 nd T + 1 I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N = y + 1 + 1 N
382 380 381 syl φ y 0 N 1 2 nd T y I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N = y + 1 + 1 N
383 374 382 uneq12d φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 + 1 N I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N = y + 1 + 1 N
384 imaundir 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N = 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T y + 1 + 1 N I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N
385 uncom y + 1 + 1 N = y + 1 + 1 N
386 un0 y + 1 + 1 N = y + 1 + 1 N
387 385 386 eqtr2i y + 1 + 1 N = y + 1 + 1 N
388 383 384 387 3eqtr4g φ y 0 N 1 2 nd T y 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N = y + 1 + 1 N
389 388 imaeq2d φ y 0 N 1 2 nd T y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N = 2 nd 1 st T y + 1 + 1 N
390 338 389 eqtrid φ y 0 N 1 2 nd T y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N = 2 nd 1 st T y + 1 + 1 N
391 390 xpeq1d φ y 0 N 1 2 nd T y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0 = 2 nd 1 st T y + 1 + 1 N × 0
392 337 391 uneq12d φ y 0 N 1 2 nd T y 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0 = 2 nd 1 st T 1 y + 1 × 1 2 nd 1 st T y + 1 + 1 N × 0
393 277 392 syldan φ y 0 N 1 ¬ y < 2 nd T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0 = 2 nd 1 st T 1 y + 1 × 1 2 nd 1 st T y + 1 + 1 N × 0
394 393 oveq2d φ y 0 N 1 ¬ y < 2 nd T 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y + 1 × 1 2 nd 1 st T y + 1 + 1 N × 0
395 iffalse ¬ y < 2 nd T if y < 2 nd T y y + 1 = y + 1
396 395 csbeq1d ¬ y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
397 ovex y + 1 V
398 oveq2 j = y + 1 1 j = 1 y + 1
399 398 imaeq2d j = y + 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1
400 399 xpeq1d j = y + 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1
401 oveq1 j = y + 1 j + 1 = y + 1 + 1
402 401 oveq1d j = y + 1 j + 1 N = y + 1 + 1 N
403 402 imaeq2d j = y + 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N
404 403 xpeq1d j = y + 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0
405 400 404 uneq12d j = y + 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0
406 405 oveq2d j = y + 1 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0
407 397 406 csbie y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0
408 396 407 eqtrdi ¬ y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0
409 408 adantl φ y 0 N 1 ¬ y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 y + 1 × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 y + 1 + 1 N × 0
410 395 csbeq1d ¬ y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
411 398 imaeq2d j = y + 1 2 nd 1 st T 1 j = 2 nd 1 st T 1 y + 1
412 411 xpeq1d j = y + 1 2 nd 1 st T 1 j × 1 = 2 nd 1 st T 1 y + 1 × 1
413 402 imaeq2d j = y + 1 2 nd 1 st T j + 1 N = 2 nd 1 st T y + 1 + 1 N
414 413 xpeq1d j = y + 1 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T y + 1 + 1 N × 0
415 412 414 uneq12d j = y + 1 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 2 nd 1 st T 1 y + 1 × 1 2 nd 1 st T y + 1 + 1 N × 0
416 415 oveq2d j = y + 1 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y + 1 × 1 2 nd 1 st T y + 1 + 1 N × 0
417 397 416 csbie y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y + 1 × 1 2 nd 1 st T y + 1 + 1 N × 0
418 410 417 eqtrdi ¬ y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y + 1 × 1 2 nd 1 st T y + 1 + 1 N × 0
419 418 adantl φ y 0 N 1 ¬ y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 y + 1 × 1 2 nd 1 st T y + 1 + 1 N × 0
420 394 409 419 3eqtr4d φ y 0 N 1 ¬ y < 2 nd T if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
421 274 420 pm2.61dan φ y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
422 421 mpteq2dva φ y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0 = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
423 109 422 eqtr4d φ F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
424 opex 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 V
425 424 24 op1std t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 1 st t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
426 424 24 op2ndd t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 2 nd t = 2 nd T
427 breq2 2 nd t = 2 nd T y < 2 nd t y < 2 nd T
428 427 ifbid 2 nd t = 2 nd T if y < 2 nd t y y + 1 = if y < 2 nd T y y + 1
429 428 csbeq1d 2 nd t = 2 nd T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
430 fvex 1 st 1 st T V
431 430 80 op1std 1 st t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 st 1 st t = 1 st 1 st T
432 430 80 op2ndd 1 st t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd 1 st t = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1
433 id 1 st 1 st t = 1 st 1 st T 1 st 1 st t = 1 st 1 st T
434 imaeq1 2 nd 1 st t = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd 1 st t 1 j = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j
435 434 xpeq1d 2 nd 1 st t = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd 1 st t 1 j × 1 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1
436 imaeq1 2 nd 1 st t = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd 1 st t j + 1 N = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N
437 436 xpeq1d 2 nd 1 st t = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
438 435 437 uneq12d 2 nd 1 st t = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
439 433 438 oveqan12d 1 st 1 st t = 1 st 1 st T 2 nd 1 st t = 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
440 431 432 439 syl2anc 1 st t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
441 440 csbeq2dv 1 st t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
442 429 441 sylan9eqr 1 st t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd t = 2 nd T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
443 425 426 442 syl2anc t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
444 443 mpteq2dv t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
445 444 eqeq2d t = 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
446 445 2 elrab2 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T S 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 1 j × 1 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 j + 1 N × 0
447 90 423 446 sylanbrc φ 1 st 1 st T 2 nd 1 st T 2 nd T 2 nd T + 1 2 nd T + 1 2 nd T I 1 N 2 nd T 2 nd T + 1 2 nd T S