Metamath Proof Explorer


Theorem 2ndcdisj

Description: Any disjoint family of open sets in a second-countable space is countable. (The sets are required to be nonempty because otherwise there could be many empty sets in the family.) (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by Mario Carneiro, 9-Apr-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Assertion 2ndcdisj J2nd𝜔xABJy*xAyBAω

Proof

Step Hyp Ref Expression
1 is2ndc J2nd𝜔bTopBasesbωtopGenb=J
2 omex ωV
3 2 brdom bωff:b1-1ω
4 ssrab2 nranf|f-1n𝒫Branf
5 f1f f:b1-1ωf:bω
6 5 frnd f:b1-1ωranfω
7 6 adantl bTopBasesf:b1-1ωranfω
8 4 7 sstrid bTopBasesf:b1-1ωnranf|f-1n𝒫Bω
9 8 adantr bTopBasesf:b1-1ωxABtopGenbnranf|f-1n𝒫Bω
10 eldifsn BtopGenbBtopGenbB
11 n0 ByyB
12 tg2 BtopGenbyBzbyzzB
13 omsson ωOn
14 8 13 sstrdi bTopBasesf:b1-1ωnranf|f-1n𝒫BOn
15 14 ad2antrr bTopBasesf:b1-1ωxAzbyzzBnranf|f-1n𝒫BOn
16 f1fn f:b1-1ωfFnb
17 16 ad3antlr bTopBasesf:b1-1ωxAzbyzzBfFnb
18 simprl bTopBasesf:b1-1ωxAzbyzzBzb
19 fnfvelrn fFnbzbfzranf
20 17 18 19 syl2anc bTopBasesf:b1-1ωxAzbyzzBfzranf
21 f1f1orn f:b1-1ωf:b1-1 ontoranf
22 21 ad3antlr bTopBasesf:b1-1ωxAzbyzzBf:b1-1 ontoranf
23 f1ocnvfv1 f:b1-1 ontoranfzbf-1fz=z
24 22 18 23 syl2anc bTopBasesf:b1-1ωxAzbyzzBf-1fz=z
25 simprrr bTopBasesf:b1-1ωxAzbyzzBzB
26 velpw z𝒫BzB
27 25 26 sylibr bTopBasesf:b1-1ωxAzbyzzBz𝒫B
28 simprrl bTopBasesf:b1-1ωxAzbyzzByz
29 28 ne0d bTopBasesf:b1-1ωxAzbyzzBz
30 eldifsn z𝒫Bz𝒫Bz
31 27 29 30 sylanbrc bTopBasesf:b1-1ωxAzbyzzBz𝒫B
32 24 31 eqeltrd bTopBasesf:b1-1ωxAzbyzzBf-1fz𝒫B
33 fveq2 n=fzf-1n=f-1fz
34 33 eleq1d n=fzf-1n𝒫Bf-1fz𝒫B
35 34 rspcev fzranff-1fz𝒫Bnranff-1n𝒫B
36 20 32 35 syl2anc bTopBasesf:b1-1ωxAzbyzzBnranff-1n𝒫B
37 rabn0 nranf|f-1n𝒫Bnranff-1n𝒫B
38 36 37 sylibr bTopBasesf:b1-1ωxAzbyzzBnranf|f-1n𝒫B
39 onint nranf|f-1n𝒫BOnnranf|f-1n𝒫Bnranf|f-1n𝒫Bnranf|f-1n𝒫B
40 15 38 39 syl2anc bTopBasesf:b1-1ωxAzbyzzBnranf|f-1n𝒫Bnranf|f-1n𝒫B
41 40 rexlimdvaa bTopBasesf:b1-1ωxAzbyzzBnranf|f-1n𝒫Bnranf|f-1n𝒫B
42 12 41 syl5 bTopBasesf:b1-1ωxABtopGenbyBnranf|f-1n𝒫Bnranf|f-1n𝒫B
43 42 expdimp bTopBasesf:b1-1ωxABtopGenbyBnranf|f-1n𝒫Bnranf|f-1n𝒫B
44 43 exlimdv bTopBasesf:b1-1ωxABtopGenbyyBnranf|f-1n𝒫Bnranf|f-1n𝒫B
45 11 44 biimtrid bTopBasesf:b1-1ωxABtopGenbBnranf|f-1n𝒫Bnranf|f-1n𝒫B
46 45 expimpd bTopBasesf:b1-1ωxABtopGenbBnranf|f-1n𝒫Bnranf|f-1n𝒫B
47 10 46 biimtrid bTopBasesf:b1-1ωxABtopGenbnranf|f-1n𝒫Bnranf|f-1n𝒫B
48 47 impr bTopBasesf:b1-1ωxABtopGenbnranf|f-1n𝒫Bnranf|f-1n𝒫B
49 9 48 sseldd bTopBasesf:b1-1ωxABtopGenbnranf|f-1n𝒫Bω
50 49 expr bTopBasesf:b1-1ωxABtopGenbnranf|f-1n𝒫Bω
51 50 ralimdva bTopBasesf:b1-1ωxABtopGenbxAnranf|f-1n𝒫Bω
52 51 imp bTopBasesf:b1-1ωxABtopGenbxAnranf|f-1n𝒫Bω
53 52 adantrr bTopBasesf:b1-1ωxABtopGenby*xAyBxAnranf|f-1n𝒫Bω
54 eqid xAnranf|f-1n𝒫B=xAnranf|f-1n𝒫B
55 54 fmpt xAnranf|f-1n𝒫BωxAnranf|f-1n𝒫B:Aω
56 53 55 sylib bTopBasesf:b1-1ωxABtopGenby*xAyBxAnranf|f-1n𝒫B:Aω
57 neeq1 f-1z=iff-1zf-1z1𝑜f-1ziff-1zf-1z1𝑜
58 neeq1 1𝑜=iff-1zf-1z1𝑜1𝑜iff-1zf-1z1𝑜
59 1n0 1𝑜
60 57 58 59 elimhyp iff-1zf-1z1𝑜
61 n0 iff-1zf-1z1𝑜yyiff-1zf-1z1𝑜
62 60 61 mpbi yyiff-1zf-1z1𝑜
63 19.29r yyiff-1zf-1z1𝑜y*xAyByyiff-1zf-1z1𝑜*xAyB
64 62 63 mpan y*xAyByyiff-1zf-1z1𝑜*xAyB
65 eleq1 z=nranf|f-1n𝒫Bznranf|f-1n𝒫Bnranf|f-1n𝒫Bnranf|f-1n𝒫B
66 48 65 syl5ibrcom bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Bznranf|f-1n𝒫B
67 66 imp bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Bznranf|f-1n𝒫B
68 fveq2 n=zf-1n=f-1z
69 68 eleq1d n=zf-1n𝒫Bf-1z𝒫B
70 69 elrab znranf|f-1n𝒫Bzranff-1z𝒫B
71 70 simprbi znranf|f-1n𝒫Bf-1z𝒫B
72 67 71 syl bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Bf-1z𝒫B
73 eldifsn f-1z𝒫Bf-1z𝒫Bf-1z
74 72 73 sylib bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Bf-1z𝒫Bf-1z
75 74 simprd bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Bf-1z
76 75 iftrued bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Biff-1zf-1z1𝑜=f-1z
77 74 simpld bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Bf-1z𝒫B
78 77 elpwid bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Bf-1zB
79 76 78 eqsstrd bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Biff-1zf-1z1𝑜B
80 79 sseld bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Byiff-1zf-1z1𝑜yB
81 80 exp31 bTopBasesf:b1-1ωxABtopGenbz=nranf|f-1n𝒫Byiff-1zf-1z1𝑜yB
82 81 com23 bTopBasesf:b1-1ωz=nranf|f-1n𝒫BxABtopGenbyiff-1zf-1z1𝑜yB
83 82 exp4a bTopBasesf:b1-1ωz=nranf|f-1n𝒫BxABtopGenbyiff-1zf-1z1𝑜yB
84 83 com25 bTopBasesf:b1-1ωyiff-1zf-1z1𝑜xABtopGenbz=nranf|f-1n𝒫ByB
85 84 imp31 bTopBasesf:b1-1ωyiff-1zf-1z1𝑜xABtopGenbz=nranf|f-1n𝒫ByB
86 85 ralimdva bTopBasesf:b1-1ωyiff-1zf-1z1𝑜xABtopGenbxAz=nranf|f-1n𝒫ByB
87 86 imp bTopBasesf:b1-1ωyiff-1zf-1z1𝑜xABtopGenbxAz=nranf|f-1n𝒫ByB
88 87 an32s bTopBasesf:b1-1ωxABtopGenbyiff-1zf-1z1𝑜xAz=nranf|f-1n𝒫ByB
89 rmoim xAz=nranf|f-1n𝒫ByB*xAyB*xAz=nranf|f-1n𝒫B
90 88 89 syl bTopBasesf:b1-1ωxABtopGenbyiff-1zf-1z1𝑜*xAyB*xAz=nranf|f-1n𝒫B
91 90 expimpd bTopBasesf:b1-1ωxABtopGenbyiff-1zf-1z1𝑜*xAyB*xAz=nranf|f-1n𝒫B
92 91 exlimdv bTopBasesf:b1-1ωxABtopGenbyyiff-1zf-1z1𝑜*xAyB*xAz=nranf|f-1n𝒫B
93 64 92 syl5 bTopBasesf:b1-1ωxABtopGenby*xAyB*xAz=nranf|f-1n𝒫B
94 93 impr bTopBasesf:b1-1ωxABtopGenby*xAyB*xAz=nranf|f-1n𝒫B
95 nfcv _xw
96 nfmpt1 _xxAnranf|f-1n𝒫B
97 nfcv _xz
98 95 96 97 nfbr xwxAnranf|f-1n𝒫Bz
99 nfv wxAz=nranf|f-1n𝒫B
100 breq1 w=xwxAnranf|f-1n𝒫BzxxAnranf|f-1n𝒫Bz
101 df-br xxAnranf|f-1n𝒫BzxzxAnranf|f-1n𝒫B
102 df-mpt xAnranf|f-1n𝒫B=xz|xAz=nranf|f-1n𝒫B
103 102 eleq2i xzxAnranf|f-1n𝒫Bxzxz|xAz=nranf|f-1n𝒫B
104 opabidw xzxz|xAz=nranf|f-1n𝒫BxAz=nranf|f-1n𝒫B
105 101 103 104 3bitri xxAnranf|f-1n𝒫BzxAz=nranf|f-1n𝒫B
106 100 105 bitrdi w=xwxAnranf|f-1n𝒫BzxAz=nranf|f-1n𝒫B
107 98 99 106 cbvmow *wwxAnranf|f-1n𝒫Bz*xxAz=nranf|f-1n𝒫B
108 df-rmo *xAz=nranf|f-1n𝒫B*xxAz=nranf|f-1n𝒫B
109 107 108 bitr4i *wwxAnranf|f-1n𝒫Bz*xAz=nranf|f-1n𝒫B
110 94 109 sylibr bTopBasesf:b1-1ωxABtopGenby*xAyB*wwxAnranf|f-1n𝒫Bz
111 110 alrimiv bTopBasesf:b1-1ωxABtopGenby*xAyBz*wwxAnranf|f-1n𝒫Bz
112 dff12 xAnranf|f-1n𝒫B:A1-1ωxAnranf|f-1n𝒫B:Aωz*wwxAnranf|f-1n𝒫Bz
113 56 111 112 sylanbrc bTopBasesf:b1-1ωxABtopGenby*xAyBxAnranf|f-1n𝒫B:A1-1ω
114 f1domg ωVxAnranf|f-1n𝒫B:A1-1ωAω
115 2 113 114 mpsyl bTopBasesf:b1-1ωxABtopGenby*xAyBAω
116 115 ex bTopBasesf:b1-1ωxABtopGenby*xAyBAω
117 difeq1 topGenb=JtopGenb=J
118 117 eleq2d topGenb=JBtopGenbBJ
119 118 ralbidv topGenb=JxABtopGenbxABJ
120 119 anbi1d topGenb=JxABtopGenby*xAyBxABJy*xAyB
121 120 imbi1d topGenb=JxABtopGenby*xAyBAωxABJy*xAyBAω
122 116 121 syl5ibcom bTopBasesf:b1-1ωtopGenb=JxABJy*xAyBAω
123 122 ex bTopBasesf:b1-1ωtopGenb=JxABJy*xAyBAω
124 123 exlimdv bTopBasesff:b1-1ωtopGenb=JxABJy*xAyBAω
125 3 124 biimtrid bTopBasesbωtopGenb=JxABJy*xAyBAω
126 125 impd bTopBasesbωtopGenb=JxABJy*xAyBAω
127 126 rexlimiv bTopBasesbωtopGenb=JxABJy*xAyBAω
128 1 127 sylbi J2nd𝜔xABJy*xAyBAω
129 128 3impib J2nd𝜔xABJy*xAyBAω