Metamath Proof Explorer


Theorem abelthlem2

Description: Lemma for abelth . The peculiar region S , known as aStolz angle , is a teardrop-shaped subset of the closed unit ball containing 1 . Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypotheses abelth.1 φA:0
abelth.2 φseq0+Adom
abelth.3 φM
abelth.4 φ0M
abelth.5 S=z|1zM1z
Assertion abelthlem2 φ1SS10ballabs1

Proof

Step Hyp Ref Expression
1 abelth.1 φA:0
2 abelth.2 φseq0+Adom
3 abelth.3 φM
4 abelth.4 φ0M
5 abelth.5 S=z|1zM1z
6 1cnd M0M1
7 0le0 00
8 simpl M0MM
9 8 recnd M0MM
10 9 mul01d M0M M0=0
11 7 10 breqtrrid M0M0 M0
12 oveq2 z=11z=11
13 1m1e0 11=0
14 12 13 eqtrdi z=11z=0
15 14 abs00bd z=11z=0
16 fveq2 z=1z=1
17 abs1 1=1
18 16 17 eqtrdi z=1z=1
19 18 oveq2d z=11z=11
20 19 13 eqtrdi z=11z=0
21 20 oveq2d z=1M1z= M0
22 15 21 breq12d z=11zM1z0 M0
23 22 5 elrab2 1S10 M0
24 6 11 23 sylanbrc M0M1S
25 velsn z1z=1
26 25 necon3bbii ¬z1z1
27 simprll M0Mz1zM1zz1z
28 0cn 0
29 eqid abs=abs
30 29 cnmetdval z0zabs0=z0
31 27 28 30 sylancl M0Mz1zM1zz1zabs0=z0
32 27 subid1d M0Mz1zM1zz1z0=z
33 32 fveq2d M0Mz1zM1zz1z0=z
34 31 33 eqtrd M0Mz1zM1zz1zabs0=z
35 27 abscld M0Mz1zM1zz1z
36 1red M0Mz1zM1zz11
37 1re 1
38 resubcl z1z1
39 35 37 38 sylancl M0Mz1zM1zz1z1
40 ax-1cn 1
41 subcl 1z1z
42 40 27 41 sylancr M0Mz1zM1zz11z
43 42 abscld M0Mz1zM1zz11z
44 simpll M0Mz1zM1zz1M
45 resubcl 1z1z
46 37 35 45 sylancr M0Mz1zM1zz11z
47 44 46 remulcld M0Mz1zM1zz1M1z
48 17 oveq2i z1=z1
49 abs2dif z1z1z1
50 27 40 49 sylancl M0Mz1zM1zz1z1z1
51 48 50 eqbrtrrid M0Mz1zM1zz1z1z1
52 abssub z1z1=1z
53 27 40 52 sylancl M0Mz1zM1zz1z1=1z
54 51 53 breqtrd M0Mz1zM1zz1z11z
55 simprlr M0Mz1zM1zz11zM1z
56 39 43 47 54 55 letrd M0Mz1zM1zz1z1M1z
57 35 36 47 lesubaddd M0Mz1zM1zz1z1M1zzM1z+1
58 56 57 mpbid M0Mz1zM1zz1zM1z+1
59 9 adantr M0Mz1zM1zz1M
60 1cnd M0Mz1zM1zz11
61 44 35 remulcld M0Mz1zM1zz1Mz
62 61 recnd M0Mz1zM1zz1Mz
63 59 60 62 addsubd M0Mz1zM1zz1M+1-Mz=M-Mz+1
64 35 recnd M0Mz1zM1zz1z
65 59 60 64 subdid M0Mz1zM1zz1M1z= M1Mz
66 59 mulridd M0Mz1zM1zz1 M1=M
67 66 oveq1d M0Mz1zM1zz1 M1Mz=MMz
68 65 67 eqtrd M0Mz1zM1zz1M1z=MMz
69 68 oveq1d M0Mz1zM1zz1M1z+1=M-Mz+1
70 63 69 eqtr4d M0Mz1zM1zz1M+1-Mz=M1z+1
71 58 70 breqtrrd M0Mz1zM1zz1zM+1-Mz
72 peano2re MM+1
73 44 72 syl M0Mz1zM1zz1M+1
74 61 35 73 leaddsub2d M0Mz1zM1zz1Mz+zM+1zM+1-Mz
75 71 74 mpbird M0Mz1zM1zz1Mz+zM+1
76 59 64 adddirp1d M0Mz1zM1zz1M+1z=Mz+z
77 73 recnd M0Mz1zM1zz1M+1
78 77 mulridd M0Mz1zM1zz1M+11=M+1
79 75 76 78 3brtr4d M0Mz1zM1zz1M+1zM+11
80 0red M0Mz1zM1zz10
81 simplr M0Mz1zM1zz10M
82 44 ltp1d M0Mz1zM1zz1M<M+1
83 80 44 73 81 82 lelttrd M0Mz1zM1zz10<M+1
84 lemul2 z1M+10<M+1z1M+1zM+11
85 35 36 73 83 84 syl112anc M0Mz1zM1zz1z1M+1zM+11
86 79 85 mpbird M0Mz1zM1zz1z1
87 43 47 55 lensymd M0Mz1zM1zz1¬M1z<1z
88 10 adantr M0Mz1zM1zz1 M0=0
89 simprr M0Mz1zM1zz1z1
90 89 necomd M0Mz1zM1zz11z
91 subeq0 1z1z=01=z
92 91 necon3bid 1z1z01z
93 40 27 92 sylancr M0Mz1zM1zz11z01z
94 90 93 mpbird M0Mz1zM1zz11z0
95 absgt0 1z1z00<1z
96 42 95 syl M0Mz1zM1zz11z00<1z
97 94 96 mpbid M0Mz1zM1zz10<1z
98 88 97 eqbrtrd M0Mz1zM1zz1 M0<1z
99 oveq2 1=z11=1z
100 13 99 eqtr3id 1=z0=1z
101 100 oveq2d 1=z M0=M1z
102 101 breq1d 1=z M0<1zM1z<1z
103 98 102 syl5ibcom M0Mz1zM1zz11=zM1z<1z
104 103 necon3bd M0Mz1zM1zz1¬M1z<1z1z
105 87 104 mpd M0Mz1zM1zz11z
106 35 36 86 105 leneltd M0Mz1zM1zz1z<1
107 34 106 eqbrtrd M0Mz1zM1zz1zabs0<1
108 cnxmet abs∞Met
109 1xr 1*
110 elbl3 abs∞Met1*0zz0ballabs1zabs0<1
111 108 109 110 mpanl12 0zz0ballabs1zabs0<1
112 28 27 111 sylancr M0Mz1zM1zz1z0ballabs1zabs0<1
113 107 112 mpbird M0Mz1zM1zz1z0ballabs1
114 113 expr M0Mz1zM1zz1z0ballabs1
115 114 3impb M0Mz1zM1zz1z0ballabs1
116 26 115 biimtrid M0Mz1zM1z¬z1z0ballabs1
117 116 orrd M0Mz1zM1zz1z0ballabs1
118 elun z10ballabs1z1z0ballabs1
119 117 118 sylibr M0Mz1zM1zz10ballabs1
120 119 rabssdv M0Mz|1zM1z10ballabs1
121 5 120 eqsstrid M0MS10ballabs1
122 ssundif S10ballabs1S10ballabs1
123 121 122 sylib M0MS10ballabs1
124 24 123 jca M0M1SS10ballabs1
125 3 4 124 syl2anc φ1SS10ballabs1