Metamath Proof Explorer


Theorem aks4d1p1p7

Description: Bound of intermediary of inequality step. (Contributed by metakunt, 19-Aug-2024)

Ref Expression
Hypotheses aks4d1p1p7.1 φ A
aks4d1p1p7.2 φ 4 A
Assertion aks4d1p1p7 φ 2 1 log 2 A 5 + 1 log 2 5 log 2 A 4 1 A log 2 + 0 + 2 log 2 2 log A 2 1 A 4 log 2 4 log A 3 A

Proof

Step Hyp Ref Expression
1 aks4d1p1p7.1 φ A
2 aks4d1p1p7.2 φ 4 A
3 1 recnd φ A
4 0red φ 0
5 4re 4
6 5 a1i φ 4
7 4pos 0 < 4
8 7 a1i φ 0 < 4
9 4 6 1 8 2 ltletrd φ 0 < A
10 4 9 ltned φ 0 A
11 10 necomd φ A 0
12 3 11 logcld φ log A
13 2cnd φ 2
14 2pos 0 < 2
15 14 a1i φ 0 < 2
16 4 15 ltned φ 0 2
17 16 necomd φ 2 0
18 13 17 logcld φ log 2
19 1lt2 1 < 2
20 2rp 2 +
21 loggt0b 2 + 0 < log 2 1 < 2
22 20 21 ax-mp 0 < log 2 1 < 2
23 19 22 mpbir 0 < log 2
24 23 a1i φ 0 < log 2
25 4 24 ltned φ 0 log 2
26 25 necomd φ log 2 0
27 5nn0 5 0
28 27 a1i φ 5 0
29 12 18 26 28 expdivd φ log A log 2 5 = log A 5 log 2 5
30 29 oveq1d φ log A log 2 5 + 1 = log A 5 log 2 5 + 1
31 30 oveq1d φ log A log 2 5 + 1 log 2 = log A 5 log 2 5 + 1 log 2
32 31 oveq2d φ 1 log A log 2 5 + 1 log 2 = 1 log A 5 log 2 5 + 1 log 2
33 32 oveq1d φ 1 log A log 2 5 + 1 log 2 5 log A 4 log 2 5 A = 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A
34 33 oveq2d φ 2 1 log A log 2 5 + 1 log 2 5 log A 4 log 2 5 A = 2 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A
35 34 oveq1d φ 2 1 log A log 2 5 + 1 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A = 2 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A
36 2re 2
37 36 a1i φ 2
38 1red φ 1
39 1 9 elrpd φ A +
40 39 relogcld φ log A
41 40 28 reexpcld φ log A 5
42 20 a1i φ 2 +
43 42 relogcld φ log 2
44 43 28 reexpcld φ log 2 5
45 28 nn0zd φ 5
46 18 26 45 expne0d φ log 2 5 0
47 41 44 46 redivcld φ log A 5 log 2 5
48 47 38 readdcld φ log A 5 log 2 5 + 1
49 48 43 remulcld φ log A 5 log 2 5 + 1 log 2
50 12 28 expcld φ log A 5
51 18 28 expcld φ log 2 5
52 50 51 46 divcld φ log A 5 log 2 5
53 1cnd φ 1
54 52 53 addcld φ log A 5 log 2 5 + 1
55 19 a1i φ 1 < 2
56 37 55 rplogcld φ log 2 +
57 56 45 rpexpcld φ log 2 5 +
58 1re 1
59 3nn0 3 0
60 58 59 nn0addge2i 1 3 + 1
61 60 a1i φ 1 3 + 1
62 df-4 4 = 3 + 1
63 61 62 breqtrrdi φ 1 4
64 38 6 1 63 2 letrd φ 1 A
65 1 64 logge0d φ 0 log A
66 40 28 65 expge0d φ 0 log A 5
67 41 57 66 divge0d φ 0 log A 5 log 2 5
68 47 ltp1d φ log A 5 log 2 5 < log A 5 log 2 5 + 1
69 4 47 48 67 68 lelttrd φ 0 < log A 5 log 2 5 + 1
70 4 69 ltned φ 0 log A 5 log 2 5 + 1
71 70 necomd φ log A 5 log 2 5 + 1 0
72 54 18 71 26 mulne0d φ log A 5 log 2 5 + 1 log 2 0
73 38 49 72 redivcld φ 1 log A 5 log 2 5 + 1 log 2
74 5re 5
75 74 a1i φ 5
76 4nn0 4 0
77 76 a1i φ 4 0
78 40 77 reexpcld φ log A 4
79 75 78 remulcld φ 5 log A 4
80 44 1 remulcld φ log 2 5 A
81 51 3 46 11 mulne0d φ log 2 5 A 0
82 79 80 81 redivcld φ 5 log A 4 log 2 5 A
83 73 82 remulcld φ 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A
84 37 83 remulcld φ 2 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A
85 43 resqcld φ log 2 2
86 2z 2
87 86 a1i φ 2
88 18 26 87 expne0d φ log 2 2 0
89 37 85 88 redivcld φ 2 log 2 2
90 1nn0 1 0
91 90 a1i φ 1 0
92 40 91 reexpcld φ log A 1
93 92 1 11 redivcld φ log A 1 A
94 89 93 remulcld φ 2 log 2 2 log A 1 A
95 84 94 readdcld φ 2 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A
96 47 43 remulcld φ log A 5 log 2 5 log 2
97 1lt4 1 < 4
98 97 a1i φ 1 < 4
99 38 6 1 98 2 ltletrd φ 1 < A
100 loggt0b A + 0 < log A 1 < A
101 39 100 syl φ 0 < log A 1 < A
102 99 101 mpbird φ 0 < log A
103 4 102 ltned φ 0 log A
104 103 necomd φ log A 0
105 12 104 45 expne0d φ log A 5 0
106 50 51 105 46 divne0d φ log A 5 log 2 5 0
107 52 18 106 26 mulne0d φ log A 5 log 2 5 log 2 0
108 38 96 107 redivcld φ 1 log A 5 log 2 5 log 2
109 108 82 remulcld φ 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A
110 37 109 remulcld φ 2 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A
111 110 94 readdcld φ 2 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A
112 59 a1i φ 3 0
113 40 112 reexpcld φ log A 3
114 6 113 remulcld φ 4 log A 3
115 43 77 reexpcld φ log 2 4
116 115 1 remulcld φ log 2 4 A
117 18 77 expcld φ log 2 4
118 4z 4
119 118 a1i φ 4
120 18 26 119 expne0d φ log 2 4 0
121 117 3 120 11 mulne0d φ log 2 4 A 0
122 114 116 121 redivcld φ 4 log A 3 log 2 4 A
123 0le2 0 2
124 123 a1i φ 0 2
125 57 39 rpmulcld φ log 2 5 A +
126 28 nn0ge0d φ 0 5
127 40 77 65 expge0d φ 0 log A 4
128 75 78 126 127 mulge0d φ 0 5 log A 4
129 79 125 128 divge0d φ 0 5 log A 4 log 2 5 A
130 1 99 rplogcld φ log A +
131 130 45 rpexpcld φ log A 5 +
132 131 57 rpdivcld φ log A 5 log 2 5 +
133 132 56 rpmulcld φ log A 5 log 2 5 log 2 +
134 24 22 sylib φ 1 < 2
135 37 134 rplogcld φ log 2 +
136 135 45 rpexpcld φ log 2 5 +
137 41 136 66 divge0d φ 0 log A 5 log 2 5
138 47 137 ge0p1rpd φ log A 5 log 2 5 + 1 +
139 138 135 rpmulcld φ log A 5 log 2 5 + 1 log 2 +
140 0le1 0 1
141 140 a1i φ 0 1
142 135 rpred φ log 2
143 135 rpge0d φ 0 log 2
144 47 lep1d φ log A 5 log 2 5 log A 5 log 2 5 + 1
145 47 48 142 143 144 lemul1ad φ log A 5 log 2 5 log 2 log A 5 log 2 5 + 1 log 2
146 133 139 38 141 145 lediv2ad φ 1 log A 5 log 2 5 + 1 log 2 1 log A 5 log 2 5 log 2
147 73 108 82 129 146 lemul1ad φ 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A
148 83 109 37 124 147 lemul2ad φ 2 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A 2 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A
149 84 110 94 148 leadd1dd φ 2 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A 2 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A
150 50 18 51 46 div23d φ log A 5 log 2 log 2 5 = log A 5 log 2 5 log 2
151 150 eqcomd φ log A 5 log 2 5 log 2 = log A 5 log 2 log 2 5
152 151 oveq2d φ 1 log A 5 log 2 5 log 2 = 1 log A 5 log 2 log 2 5
153 152 oveq1d φ 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A = 1 log A 5 log 2 log 2 5 5 log A 4 log 2 5 A
154 153 oveq2d φ 2 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A = 2 1 log A 5 log 2 log 2 5 5 log A 4 log 2 5 A
155 18 sqcld φ log 2 2
156 12 91 expcld φ log A 1
157 13 155 156 3 88 11 divmuldivd φ 2 log 2 2 log A 1 A = 2 log A 1 log 2 2 A
158 154 157 oveq12d φ 2 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A = 2 1 log A 5 log 2 log 2 5 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A
159 50 18 mulcld φ log A 5 log 2
160 50 18 105 26 mulne0d φ log A 5 log 2 0
161 53 159 51 160 46 divdiv2d φ 1 log A 5 log 2 log 2 5 = 1 log 2 5 log A 5 log 2
162 161 oveq1d φ 1 log A 5 log 2 log 2 5 5 log A 4 log 2 5 A = 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A
163 162 oveq2d φ 2 1 log A 5 log 2 log 2 5 5 log A 4 log 2 5 A = 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A
164 53 51 mulcld φ 1 log 2 5
165 164 159 160 divcld φ 1 log 2 5 log A 5 log 2
166 82 recnd φ 5 log A 4 log 2 5 A
167 13 165 166 mulassd φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A = 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A
168 167 eqcomd φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A = 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A
169 163 168 eqtrd φ 2 1 log A 5 log 2 log 2 5 5 log A 4 log 2 5 A = 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A
170 169 oveq1d φ 2 1 log A 5 log 2 log 2 5 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A = 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A
171 13 164 159 160 divassd φ 2 1 log 2 5 log A 5 log 2 = 2 1 log 2 5 log A 5 log 2
172 171 eqcomd φ 2 1 log 2 5 log A 5 log 2 = 2 1 log 2 5 log A 5 log 2
173 172 oveq1d φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A = 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A
174 173 oveq1d φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A = 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A
175 13 53 51 mulassd φ 2 1 log 2 5 = 2 1 log 2 5
176 175 eqcomd φ 2 1 log 2 5 = 2 1 log 2 5
177 176 oveq1d φ 2 1 log 2 5 log A 5 log 2 = 2 1 log 2 5 log A 5 log 2
178 177 oveq1d φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A = 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A
179 178 oveq1d φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A = 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A
180 13 mulid1d φ 2 1 = 2
181 180 oveq1d φ 2 1 log 2 5 = 2 log 2 5
182 181 oveq1d φ 2 1 log 2 5 log A 5 log 2 = 2 log 2 5 log A 5 log 2
183 182 oveq1d φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A = 2 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A
184 183 oveq1d φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A = 2 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A
185 13 51 mulcld φ 2 log 2 5
186 79 recnd φ 5 log A 4
187 51 3 mulcld φ log 2 5 A
188 185 159 186 187 160 81 divmuldivd φ 2 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A = 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A
189 188 oveq1d φ 2 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A = 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A
190 50 18 187 mulassd φ log A 5 log 2 log 2 5 A = log A 5 log 2 log 2 5 A
191 190 oveq2d φ 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A = 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A
192 191 oveq1d φ 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A = 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A
193 185 186 mulcomd φ 2 log 2 5 5 log A 4 = 5 log A 4 2 log 2 5
194 18 51 3 mulassd φ log 2 log 2 5 A = log 2 log 2 5 A
195 194 eqcomd φ log 2 log 2 5 A = log 2 log 2 5 A
196 195 oveq2d φ log A 5 log 2 log 2 5 A = log A 5 log 2 log 2 5 A
197 193 196 oveq12d φ 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A = 5 log A 4 2 log 2 5 log A 5 log 2 log 2 5 A
198 197 oveq1d φ 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A = 5 log A 4 2 log 2 5 log A 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A
199 18 51 mulcld φ log 2 log 2 5
200 199 3 mulcld φ log 2 log 2 5 A
201 18 51 26 46 mulne0d φ log 2 log 2 5 0
202 199 3 201 11 mulne0d φ log 2 log 2 5 A 0
203 186 50 185 200 105 202 divmuldivd φ 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A = 5 log A 4 2 log 2 5 log A 5 log 2 log 2 5 A
204 203 eqcomd φ 5 log A 4 2 log 2 5 log A 5 log 2 log 2 5 A = 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A
205 204 oveq1d φ 5 log A 4 2 log 2 5 log A 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A = 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A
206 75 recnd φ 5
207 78 recnd φ log A 4
208 206 207 50 105 divassd φ 5 log A 4 log A 5 = 5 log A 4 log A 5
209 194 oveq2d φ 2 log 2 5 log 2 log 2 5 A = 2 log 2 5 log 2 log 2 5 A
210 208 209 oveq12d φ 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A = 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A
211 210 oveq1d φ 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A = 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A
212 77 nn0zd φ 4
213 12 104 45 212 expsubd φ log A 4 5 = log A 4 log A 5
214 213 eqcomd φ log A 4 log A 5 = log A 4 5
215 4p1e5 4 + 1 = 5
216 74 recni 5
217 5 recni 4
218 ax-1cn 1
219 216 217 218 subaddi 5 4 = 1 4 + 1 = 5
220 215 219 mpbir 5 4 = 1
221 220 a1i φ 5 4 = 1
222 53 subid1d φ 1 0 = 1
223 221 222 eqtr4d φ 5 4 = 1 0
224 206 217 jctir φ 5 4
225 0cnd φ 0
226 53 225 jca φ 1 0
227 subeqrev 5 4 1 0 5 4 = 1 0 4 5 = 0 1
228 224 226 227 syl2anc φ 5 4 = 1 0 4 5 = 0 1
229 223 228 mpbid φ 4 5 = 0 1
230 df-neg 1 = 0 1
231 229 230 eqtr4di φ 4 5 = 1
232 231 oveq2d φ log A 4 5 = log A 1
233 214 232 eqtrd φ log A 4 log A 5 = log A 1
234 233 oveq2d φ 5 log A 4 log A 5 = 5 log A 1
235 13 18 51 187 26 81 divmuldivd φ 2 log 2 log 2 5 log 2 5 A = 2 log 2 5 log 2 log 2 5 A
236 235 eqcomd φ 2 log 2 5 log 2 log 2 5 A = 2 log 2 log 2 5 log 2 5 A
237 234 236 oveq12d φ 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A = 5 log A 1 2 log 2 log 2 5 log 2 5 A
238 237 oveq1d φ 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A = 5 log A 1 2 log 2 log 2 5 log 2 5 A + 2 log A 1 log 2 2 A
239 1zzd φ 1
240 12 104 239 expnegd φ log A 1 = 1 log A 1
241 240 oveq2d φ 5 log A 1 = 5 1 log A 1
242 51 51 3 46 11 divdiv1d φ log 2 5 log 2 5 A = log 2 5 log 2 5 A
243 242 eqcomd φ log 2 5 log 2 5 A = log 2 5 log 2 5 A
244 243 oveq2d φ 2 log 2 log 2 5 log 2 5 A = 2 log 2 log 2 5 log 2 5 A
245 241 244 oveq12d φ 5 log A 1 2 log 2 log 2 5 log 2 5 A = 5 1 log A 1 2 log 2 log 2 5 log 2 5 A
246 245 oveq1d φ 5 log A 1 2 log 2 log 2 5 log 2 5 A + 2 log A 1 log 2 2 A = 5 1 log A 1 2 log 2 log 2 5 log 2 5 A + 2 log A 1 log 2 2 A
247 12 104 239 expne0d φ log A 1 0
248 206 53 156 247 divassd φ 5 1 log A 1 = 5 1 log A 1
249 248 eqcomd φ 5 1 log A 1 = 5 1 log A 1
250 51 46 dividd φ log 2 5 log 2 5 = 1
251 250 oveq1d φ log 2 5 log 2 5 A = 1 A
252 251 oveq2d φ 2 log 2 log 2 5 log 2 5 A = 2 log 2 1 A
253 249 252 oveq12d φ 5 1 log A 1 2 log 2 log 2 5 log 2 5 A = 5 1 log A 1 2 log 2 1 A
254 253 oveq1d φ 5 1 log A 1 2 log 2 log 2 5 log 2 5 A + 2 log A 1 log 2 2 A = 5 1 log A 1 2 log 2 1 A + 2 log A 1 log 2 2 A
255 206 mulid1d φ 5 1 = 5
256 255 oveq1d φ 5 1 log A 1 = 5 log A 1
257 13 18 53 3 26 11 divmuldivd φ 2 log 2 1 A = 2 1 log 2 A
258 256 257 oveq12d φ 5 1 log A 1 2 log 2 1 A = 5 log A 1 2 1 log 2 A
259 258 oveq1d φ 5 1 log A 1 2 log 2 1 A + 2 log A 1 log 2 2 A = 5 log A 1 2 1 log 2 A + 2 log A 1 log 2 2 A
260 180 13 eqeltrd φ 2 1
261 18 3 mulcld φ log 2 A
262 18 3 26 11 mulne0d φ log 2 A 0
263 206 156 260 261 247 262 divmuldivd φ 5 log A 1 2 1 log 2 A = 5 2 1 log A 1 log 2 A
264 180 oveq2d φ 5 2 1 = 5 2
265 264 oveq1d φ 5 2 1 log A 1 log 2 A = 5 2 log A 1 log 2 A
266 263 265 eqtrd φ 5 log A 1 2 1 log 2 A = 5 2 log A 1 log 2 A
267 266 oveq1d φ 5 log A 1 2 1 log 2 A + 2 log A 1 log 2 2 A = 5 2 log A 1 log 2 A + 2 log A 1 log 2 2 A
268 5t2e10 5 2 = 10
269 268 a1i φ 5 2 = 10
270 269 oveq1d φ 5 2 log A 1 log 2 A = 10 log A 1 log 2 A
271 270 oveq1d φ 5 2 log A 1 log 2 A + 2 log A 1 log 2 2 A = 10 log A 1 log 2 A + 2 log A 1 log 2 2 A
272 10nn0 10 0
273 272 nn0cni 10
274 273 a1i φ 10
275 274 mulid1d φ 10 1 = 10
276 275 oveq1d φ 10 1 log A 1 log 2 = 10 log A 1 log 2
277 13 156 mulcld φ 2 log A 1
278 277 155 88 divcld φ 2 log A 1 log 2 2
279 278 mulid2d φ 1 2 log A 1 log 2 2 = 2 log A 1 log 2 2
280 276 279 oveq12d φ 10 1 log A 1 log 2 + 1 2 log A 1 log 2 2 = 10 log A 1 log 2 + 2 log A 1 log 2 2
281 18 91 expcld φ log 2 1
282 18 26 239 expne0d φ log 2 1 0
283 277 281 282 divcld φ 2 log A 1 log 2 1
284 283 mulid1d φ 2 log A 1 log 2 1 1 = 2 log A 1 log 2 1
285 284 oveq2d φ 10 log A 1 + 2 log A 1 log 2 1 1 = 10 log A 1 + 2 log A 1 log 2 1
286 10re 10
287 286 a1i φ 10
288 287 40 104 redivcld φ 10 log A
289 40 43 26 redivcld φ log A log 2
290 289 91 reexpcld φ log A log 2 1
291 37 290 remulcld φ 2 log A log 2 1
292 288 291 readdcld φ 10 log A + 2 log A log 2 1
293 287 291 readdcld φ 10 + 2 log A log 2 1
294 43 112 reexpcld φ log 2 3
295 3z 3
296 295 a1i φ 3
297 18 26 296 expne0d φ log 2 3 0
298 113 294 297 redivcld φ log A 3 log 2 3
299 6 298 remulcld φ 4 log A 3 log 2 3
300 ere e
301 300 a1i φ e
302 112 nn0red φ 3
303 egt2lt3 2 < e e < 3
304 303 simpri e < 3
305 304 a1i φ e < 3
306 3lt4 3 < 4
307 306 a1i φ 3 < 4
308 302 6 1 307 2 ltletrd φ 3 < A
309 301 302 1 305 308 lttrd φ e < A
310 301 1 309 ltled φ e A
311 301 1 lenltd φ e A ¬ A < e
312 310 311 mpbid φ ¬ A < e
313 loglt1b A + log A < 1 A < e
314 39 313 syl φ log A < 1 A < e
315 312 314 mtbird φ ¬ log A < 1
316 38 40 lenltd φ 1 log A ¬ log A < 1
317 315 316 mpbird φ 1 log A
318 10nn 10
319 318 a1i φ 10
320 nnledivrp 10 log A + 1 log A 10 log A 10
321 319 130 320 syl2anc φ 1 log A 10 log A 10
322 317 321 mpbid φ 10 log A 10
323 288 287 291 322 leadd1dd φ 10 log A + 2 log A log 2 1 10 + 2 log A log 2 1
324 38 55 gtned φ 2 1
325 37 15 1 9 324 relogbcld φ log 2 A
326 325 91 reexpcld φ log 2 A 1
327 42 55 jca φ 2 + 1 < 2
328 logbgt0b A + 2 + 1 < 2 0 < log 2 A 1 < A
329 39 327 328 syl2anc φ 0 < log 2 A 1 < A
330 99 329 mpbird φ 0 < log 2 A
331 325 330 elrpd φ log 2 A +
332 331 239 rpexpcld φ log 2 A 1 +
333 332 rpne0d φ log 2 A 1 0
334 287 326 333 redivcld φ 10 log 2 A 1
335 334 37 readdcld φ 10 log 2 A 1 + 2
336 sq2 2 2 = 4
337 336 a1i φ 2 2 = 4
338 337 6 eqeltrd φ 2 2
339 6 338 remulcld φ 4 2 2
340 325 resqcld φ log 2 A 2
341 6 340 remulcld φ 4 log 2 A 2
342 325 recnd φ log 2 A
343 342 exp1d φ log 2 A 1 = log 2 A
344 343 oveq2d φ 10 log 2 A 1 = 10 log 2 A
345 344 oveq1d φ 10 log 2 A 1 + 2 = 10 log 2 A + 2
346 345 335 eqeltrrd φ 10 log 2 A + 2
347 287 rehalfcld φ 10 2
348 347 37 readdcld φ 10 2 + 2
349 344 334 eqeltrrd φ 10 log 2 A
350 287 37 17 redivcld φ 10 2
351 272 nn0ge0i 0 10
352 351 a1i φ 0 10
353 42 324 87 relogbexpd φ log 2 2 2 = 2
354 353 eqcomd φ 2 = log 2 2 2
355 337 oveq2d φ log 2 2 2 = log 2 4
356 354 355 eqtrd φ 2 = log 2 4
357 37 leidd φ 2 2
358 87 357 6 8 1 9 2 logblebd φ log 2 4 log 2 A
359 356 358 eqbrtrd φ 2 log 2 A
360 42 331 287 352 359 lediv2ad φ 10 log 2 A 10 2
361 349 350 37 360 leadd1dd φ 10 log 2 A + 2 10 2 + 2
362 1nn 1
363 6nn0 6 0
364 2nn0 2 0
365 27 364 nn0addcli 5 + 2 0
366 5p2e7 5 + 2 = 7
367 7re 7
368 367 364 nn0addge1i 7 7 + 2
369 7p2e9 7 + 2 = 9
370 368 369 breqtri 7 9
371 366 370 eqbrtri 5 + 2 9
372 362 363 365 371 declei 5 + 2 16
373 372 a1i φ 5 + 2 16
374 206 13 274 17 ldiv φ 5 2 = 10 5 = 10 2
375 269 374 mpbid φ 5 = 10 2
376 375 oveq1d φ 5 + 2 = 10 2 + 2
377 4t4e16 4 4 = 16
378 377 eqcomi 16 = 4 4
379 378 a1i φ 16 = 4 4
380 337 eqcomd φ 4 = 2 2
381 380 oveq2d φ 4 4 = 4 2 2
382 379 381 eqtrd φ 16 = 4 2 2
383 373 376 382 3brtr3d φ 10 2 + 2 4 2 2
384 346 348 339 361 383 letrd φ 10 log 2 A + 2 4 2 2
385 345 384 eqbrtrd φ 10 log 2 A 1 + 2 4 2 2
386 4 6 8 ltled φ 0 4
387 364 a1i φ 2 0
388 37 325 387 124 359 leexp1ad φ 2 2 log 2 A 2
389 338 340 6 386 388 lemul2ad φ 4 2 2 4 log 2 A 2
390 335 339 341 385 389 letrd φ 10 log 2 A 1 + 2 4 log 2 A 2
391 37 326 remulcld φ 2 log 2 A 1
392 391 recnd φ 2 log 2 A 1
393 326 recnd φ log 2 A 1
394 274 392 393 333 divdird φ 10 + 2 log 2 A 1 log 2 A 1 = 10 log 2 A 1 + 2 log 2 A 1 log 2 A 1
395 13 393 393 333 divassd φ 2 log 2 A 1 log 2 A 1 = 2 log 2 A 1 log 2 A 1
396 395 oveq2d φ 10 log 2 A 1 + 2 log 2 A 1 log 2 A 1 = 10 log 2 A 1 + 2 log 2 A 1 log 2 A 1
397 393 333 dividd φ log 2 A 1 log 2 A 1 = 1
398 397 oveq2d φ 2 log 2 A 1 log 2 A 1 = 2 1
399 398 180 eqtrd φ 2 log 2 A 1 log 2 A 1 = 2
400 399 oveq2d φ 10 log 2 A 1 + 2 log 2 A 1 log 2 A 1 = 10 log 2 A 1 + 2
401 396 400 eqtrd φ 10 log 2 A 1 + 2 log 2 A 1 log 2 A 1 = 10 log 2 A 1 + 2
402 394 401 eqtrd φ 10 + 2 log 2 A 1 log 2 A 1 = 10 log 2 A 1 + 2
403 402 eqcomd φ 10 log 2 A 1 + 2 = 10 + 2 log 2 A 1 log 2 A 1
404 2p1e3 2 + 1 = 3
405 404 a1i φ 2 + 1 = 3
406 302 recnd φ 3
407 406 53 13 subadd2d φ 3 1 = 2 2 + 1 = 3
408 405 407 mpbird φ 3 1 = 2
409 408 eqcomd φ 2 = 3 1
410 409 oveq2d φ log 2 A 2 = log 2 A 3 1
411 410 oveq2d φ 4 log 2 A 2 = 4 log 2 A 3 1
412 4 330 gtned φ log 2 A 0
413 342 412 239 296 expsubd φ log 2 A 3 1 = log 2 A 3 log 2 A 1
414 413 oveq2d φ 4 log 2 A 3 1 = 4 log 2 A 3 log 2 A 1
415 411 414 eqtrd φ 4 log 2 A 2 = 4 log 2 A 3 log 2 A 1
416 217 a1i φ 4
417 325 112 reexpcld φ log 2 A 3
418 417 recnd φ log 2 A 3
419 416 418 393 333 divassd φ 4 log 2 A 3 log 2 A 1 = 4 log 2 A 3 log 2 A 1
420 419 eqcomd φ 4 log 2 A 3 log 2 A 1 = 4 log 2 A 3 log 2 A 1
421 415 420 eqtrd φ 4 log 2 A 2 = 4 log 2 A 3 log 2 A 1
422 390 403 421 3brtr3d φ 10 + 2 log 2 A 1 log 2 A 1 4 log 2 A 3 log 2 A 1
423 287 391 readdcld φ 10 + 2 log 2 A 1
424 6 417 remulcld φ 4 log 2 A 3
425 423 424 332 lediv1d φ 10 + 2 log 2 A 1 4 log 2 A 3 10 + 2 log 2 A 1 log 2 A 1 4 log 2 A 3 log 2 A 1
426 422 425 mpbird φ 10 + 2 log 2 A 1 4 log 2 A 3
427 87 uzidd φ 2 2
428 427 39 jca φ 2 2 A +
429 relogbval 2 2 A + log 2 A = log A log 2
430 428 429 syl φ log 2 A = log A log 2
431 430 oveq1d φ log 2 A 1 = log A log 2 1
432 431 oveq2d φ 2 log 2 A 1 = 2 log A log 2 1
433 432 oveq2d φ 10 + 2 log 2 A 1 = 10 + 2 log A log 2 1
434 430 oveq1d φ log 2 A 3 = log A log 2 3
435 12 18 26 112 expdivd φ log A log 2 3 = log A 3 log 2 3
436 434 435 eqtrd φ log 2 A 3 = log A 3 log 2 3
437 436 oveq2d φ 4 log 2 A 3 = 4 log A 3 log 2 3
438 426 433 437 3brtr3d φ 10 + 2 log A log 2 1 4 log A 3 log 2 3
439 292 293 299 323 438 letrd φ 10 log A + 2 log A log 2 1 4 log A 3 log 2 3
440 12 exp1d φ log A 1 = log A
441 440 eqcomd φ log A = log A 1
442 441 oveq2d φ 10 log A = 10 log A 1
443 13 156 281 282 divassd φ 2 log A 1 log 2 1 = 2 log A 1 log 2 1
444 12 18 26 91 expdivd φ log A log 2 1 = log A 1 log 2 1
445 444 eqcomd φ log A 1 log 2 1 = log A log 2 1
446 445 oveq2d φ 2 log A 1 log 2 1 = 2 log A log 2 1
447 443 446 eqtrd φ 2 log A 1 log 2 1 = 2 log A log 2 1
448 447 eqcomd φ 2 log A log 2 1 = 2 log A 1 log 2 1
449 442 448 oveq12d φ 10 log A + 2 log A log 2 1 = 10 log A 1 + 2 log A 1 log 2 1
450 113 recnd φ log A 3
451 18 112 expcld φ log 2 3
452 416 450 451 297 divassd φ 4 log A 3 log 2 3 = 4 log A 3 log 2 3
453 452 eqcomd φ 4 log A 3 log 2 3 = 4 log A 3 log 2 3
454 439 449 453 3brtr3d φ 10 log A 1 + 2 log A 1 log 2 1 4 log A 3 log 2 3
455 285 454 eqbrtrd φ 10 log A 1 + 2 log A 1 log 2 1 1 4 log A 3 log 2 3
456 281 282 dividd φ log 2 1 log 2 1 = 1
457 456 eqcomd φ 1 = log 2 1 log 2 1
458 457 oveq2d φ 2 log A 1 log 2 1 1 = 2 log A 1 log 2 1 log 2 1 log 2 1
459 277 281 281 281 282 282 divmuldivd φ 2 log A 1 log 2 1 log 2 1 log 2 1 = 2 log A 1 log 2 1 log 2 1 log 2 1
460 458 459 eqtrd φ 2 log A 1 log 2 1 1 = 2 log A 1 log 2 1 log 2 1 log 2 1
461 460 oveq2d φ 10 log A 1 + 2 log A 1 log 2 1 1 = 10 log A 1 + 2 log A 1 log 2 1 log 2 1 log 2 1
462 416 450 mulcld φ 4 log A 3
463 462 451 297 divcld φ 4 log A 3 log 2 3
464 463 mulid1d φ 4 log A 3 log 2 3 1 = 4 log A 3 log 2 3
465 464 eqcomd φ 4 log A 3 log 2 3 = 4 log A 3 log 2 3 1
466 455 461 465 3brtr3d φ 10 log A 1 + 2 log A 1 log 2 1 log 2 1 log 2 1 4 log A 3 log 2 3 1
467 274 156 247 divcld φ 10 log A 1
468 467 mulid1d φ 10 log A 1 1 = 10 log A 1
469 468 eqcomd φ 10 log A 1 = 10 log A 1 1
470 18 26 dividd φ log 2 log 2 = 1
471 470 eqcomd φ 1 = log 2 log 2
472 471 oveq2d φ 10 log A 1 1 = 10 log A 1 log 2 log 2
473 469 472 eqtrd φ 10 log A 1 = 10 log A 1 log 2 log 2
474 274 156 18 18 247 26 divmuldivd φ 10 log A 1 log 2 log 2 = 10 log 2 log A 1 log 2
475 473 474 eqtrd φ 10 log A 1 = 10 log 2 log A 1 log 2
476 18 exp1d φ log 2 1 = log 2
477 476 oveq2d φ 2 log A 1 log 2 1 = 2 log A 1 log 2
478 df-2 2 = 1 + 1
479 478 a1i φ 2 = 1 + 1
480 479 oveq2d φ log 2 2 = log 2 1 + 1
481 18 91 91 expaddd φ log 2 1 + 1 = log 2 1 log 2 1
482 480 481 eqtrd φ log 2 2 = log 2 1 log 2 1
483 482 eqcomd φ log 2 1 log 2 1 = log 2 2
484 477 483 oveq12d φ 2 log A 1 log 2 1 log 2 1 log 2 1 = 2 log A 1 log 2 log 2 2
485 475 484 oveq12d φ 10 log A 1 + 2 log A 1 log 2 1 log 2 1 log 2 1 = 10 log 2 log A 1 log 2 + 2 log A 1 log 2 log 2 2
486 476 eqcomd φ log 2 = log 2 1
487 486 oveq2d φ log 2 log 2 = log 2 log 2 1
488 471 487 eqtrd φ 1 = log 2 log 2 1
489 488 oveq2d φ 4 log A 3 log 2 3 1 = 4 log A 3 log 2 3 log 2 log 2 1
490 476 18 eqeltrd φ log 2 1
491 476 26 eqnetrd φ log 2 1 0
492 462 451 18 490 297 491 divmuldivd φ 4 log A 3 log 2 3 log 2 log 2 1 = 4 log A 3 log 2 log 2 3 log 2 1
493 489 492 eqtrd φ 4 log A 3 log 2 3 1 = 4 log A 3 log 2 log 2 3 log 2 1
494 466 485 493 3brtr3d φ 10 log 2 log A 1 log 2 + 2 log A 1 log 2 log 2 2 4 log A 3 log 2 log 2 3 log 2 1
495 156 18 mulcld φ log A 1 log 2
496 156 18 247 26 mulne0d φ log A 1 log 2 0
497 274 18 495 496 div23d φ 10 log 2 log A 1 log 2 = 10 log A 1 log 2 log 2
498 277 18 155 88 div23d φ 2 log A 1 log 2 log 2 2 = 2 log A 1 log 2 2 log 2
499 497 498 oveq12d φ 10 log 2 log A 1 log 2 + 2 log A 1 log 2 log 2 2 = 10 log A 1 log 2 log 2 + 2 log A 1 log 2 2 log 2
500 62 a1i φ 4 = 3 + 1
501 500 oveq2d φ log 2 4 = log 2 3 + 1
502 18 91 112 expaddd φ log 2 3 + 1 = log 2 3 log 2 1
503 501 502 eqtrd φ log 2 4 = log 2 3 log 2 1
504 503 eqcomd φ log 2 3 log 2 1 = log 2 4
505 504 oveq2d φ 4 log A 3 log 2 log 2 3 log 2 1 = 4 log A 3 log 2 log 2 4
506 494 499 505 3brtr3d φ 10 log A 1 log 2 log 2 + 2 log A 1 log 2 2 log 2 4 log A 3 log 2 log 2 4
507 92 43 remulcld φ log A 1 log 2
508 287 507 496 redivcld φ 10 log A 1 log 2
509 508 recnd φ 10 log A 1 log 2
510 509 278 18 adddird φ 10 log A 1 log 2 + 2 log A 1 log 2 2 log 2 = 10 log A 1 log 2 log 2 + 2 log A 1 log 2 2 log 2
511 510 eqcomd φ 10 log A 1 log 2 log 2 + 2 log A 1 log 2 2 log 2 = 10 log A 1 log 2 + 2 log A 1 log 2 2 log 2
512 18 26 212 expne0d φ log 2 4 0
513 462 18 117 512 div23d φ 4 log A 3 log 2 log 2 4 = 4 log A 3 log 2 4 log 2
514 506 511 513 3brtr3d φ 10 log A 1 log 2 + 2 log A 1 log 2 2 log 2 4 log A 3 log 2 4 log 2
515 37 92 remulcld φ 2 log A 1
516 515 85 88 redivcld φ 2 log A 1 log 2 2
517 508 516 readdcld φ 10 log A 1 log 2 + 2 log A 1 log 2 2
518 114 115 120 redivcld φ 4 log A 3 log 2 4
519 517 518 135 lemul1d φ 10 log A 1 log 2 + 2 log A 1 log 2 2 4 log A 3 log 2 4 10 log A 1 log 2 + 2 log A 1 log 2 2 log 2 4 log A 3 log 2 4 log 2
520 514 519 mpbird φ 10 log A 1 log 2 + 2 log A 1 log 2 2 4 log A 3 log 2 4
521 280 520 eqbrtrd φ 10 1 log A 1 log 2 + 1 2 log A 1 log 2 2 4 log A 3 log 2 4
522 274 53 495 496 divassd φ 10 1 log A 1 log 2 = 10 1 log A 1 log 2
523 53 277 155 88 div12d φ 1 2 log A 1 log 2 2 = 2 log A 1 1 log 2 2
524 522 523 oveq12d φ 10 1 log A 1 log 2 + 1 2 log A 1 log 2 2 = 10 1 log A 1 log 2 + 2 log A 1 1 log 2 2
525 462 mulid1d φ 4 log A 3 1 = 4 log A 3
526 525 eqcomd φ 4 log A 3 = 4 log A 3 1
527 526 oveq1d φ 4 log A 3 log 2 4 = 4 log A 3 1 log 2 4
528 521 524 527 3brtr3d φ 10 1 log A 1 log 2 + 2 log A 1 1 log 2 2 4 log A 3 1 log 2 4
529 3 11 dividd φ A A = 1
530 529 eqcomd φ 1 = A A
531 530 oveq1d φ 1 log A 1 log 2 = A A log A 1 log 2
532 3 3 495 11 496 divdiv1d φ A A log A 1 log 2 = A A log A 1 log 2
533 531 532 eqtrd φ 1 log A 1 log 2 = A A log A 1 log 2
534 533 oveq2d φ 10 1 log A 1 log 2 = 10 A A log A 1 log 2
535 eqidd φ 2 log A 1 1 log 2 2 = 2 log A 1 1 log 2 2
536 530 oveq1d φ 1 log 2 2 = A A log 2 2
537 536 oveq2d φ 2 log A 1 1 log 2 2 = 2 log A 1 A A log 2 2
538 535 537 eqtrd φ 2 log A 1 1 log 2 2 = 2 log A 1 A A log 2 2
539 534 538 oveq12d φ 10 1 log A 1 log 2 + 2 log A 1 1 log 2 2 = 10 A A log A 1 log 2 + 2 log A 1 A A log 2 2
540 462 53 117 512 divassd φ 4 log A 3 1 log 2 4 = 4 log A 3 1 log 2 4
541 528 539 540 3brtr3d φ 10 A A log A 1 log 2 + 2 log A 1 A A log 2 2 4 log A 3 1 log 2 4
542 3 495 mulcomd φ A log A 1 log 2 = log A 1 log 2 A
543 156 18 3 mulassd φ log A 1 log 2 A = log A 1 log 2 A
544 542 543 eqtrd φ A log A 1 log 2 = log A 1 log 2 A
545 544 oveq2d φ A A log A 1 log 2 = A log A 1 log 2 A
546 545 oveq2d φ 10 A A log A 1 log 2 = 10 A log A 1 log 2 A
547 3 3 155 11 88 divdiv1d φ A A log 2 2 = A A log 2 2
548 3 155 mulcomd φ A log 2 2 = log 2 2 A
549 548 oveq2d φ A A log 2 2 = A log 2 2 A
550 547 549 eqtrd φ A A log 2 2 = A log 2 2 A
551 550 oveq2d φ 2 log A 1 A A log 2 2 = 2 log A 1 A log 2 2 A
552 546 551 oveq12d φ 10 A A log A 1 log 2 + 2 log A 1 A A log 2 2 = 10 A log A 1 log 2 A + 2 log A 1 A log 2 2 A
553 eqidd φ 1 log 2 4 = 1 log 2 4
554 530 oveq1d φ 1 log 2 4 = A A log 2 4
555 553 554 eqtrd φ 1 log 2 4 = A A log 2 4
556 555 oveq2d φ 4 log A 3 1 log 2 4 = 4 log A 3 A A log 2 4
557 541 552 556 3brtr3d φ 10 A log A 1 log 2 A + 2 log A 1 A log 2 2 A 4 log A 3 A A log 2 4
558 156 261 mulcld φ log A 1 log 2 A
559 156 261 247 262 mulne0d φ log A 1 log 2 A 0
560 274 558 3 559 div32d φ 10 log A 1 log 2 A A = 10 A log A 1 log 2 A
561 560 eqcomd φ 10 A log A 1 log 2 A = 10 log A 1 log 2 A A
562 155 3 mulcld φ log 2 2 A
563 155 3 88 11 mulne0d φ log 2 2 A 0
564 277 562 3 563 div32d φ 2 log A 1 log 2 2 A A = 2 log A 1 A log 2 2 A
565 564 eqcomd φ 2 log A 1 A log 2 2 A = 2 log A 1 log 2 2 A A
566 561 565 oveq12d φ 10 A log A 1 log 2 A + 2 log A 1 A log 2 2 A = 10 log A 1 log 2 A A + 2 log A 1 log 2 2 A A
567 3 3 117 11 512 divdiv1d φ A A log 2 4 = A A log 2 4
568 3 117 mulcomd φ A log 2 4 = log 2 4 A
569 568 oveq2d φ A A log 2 4 = A log 2 4 A
570 567 569 eqtrd φ A A log 2 4 = A log 2 4 A
571 570 oveq2d φ 4 log A 3 A A log 2 4 = 4 log A 3 A log 2 4 A
572 557 566 571 3brtr3d φ 10 log A 1 log 2 A A + 2 log A 1 log 2 2 A A 4 log A 3 A log 2 4 A
573 43 1 remulcld φ log 2 A
574 92 573 remulcld φ log A 1 log 2 A
575 287 574 559 redivcld φ 10 log A 1 log 2 A
576 575 recnd φ 10 log A 1 log 2 A
577 157 94 eqeltrrd φ 2 log A 1 log 2 2 A
578 577 recnd φ 2 log A 1 log 2 2 A
579 576 578 3 adddird φ 10 log A 1 log 2 A + 2 log A 1 log 2 2 A A = 10 log A 1 log 2 A A + 2 log A 1 log 2 2 A A
580 579 eqcomd φ 10 log A 1 log 2 A A + 2 log A 1 log 2 2 A A = 10 log A 1 log 2 A + 2 log A 1 log 2 2 A A
581 12 112 expcld φ log A 3
582 416 581 mulcld φ 4 log A 3
583 117 3 mulcld φ log 2 4 A
584 117 3 512 11 mulne0d φ log 2 4 A 0
585 582 583 3 584 div32d φ 4 log A 3 log 2 4 A A = 4 log A 3 A log 2 4 A
586 585 eqcomd φ 4 log A 3 A log 2 4 A = 4 log A 3 log 2 4 A A
587 572 580 586 3brtr3d φ 10 log A 1 log 2 A + 2 log A 1 log 2 2 A A 4 log A 3 log 2 4 A A
588 575 577 readdcld φ 10 log A 1 log 2 A + 2 log A 1 log 2 2 A
589 588 122 39 lemul1d φ 10 log A 1 log 2 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A 10 log A 1 log 2 A + 2 log A 1 log 2 2 A A 4 log A 3 log 2 4 A A
590 587 589 mpbird φ 10 log A 1 log 2 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
591 271 590 eqbrtrd φ 5 2 log A 1 log 2 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
592 267 591 eqbrtrd φ 5 log A 1 2 1 log 2 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
593 259 592 eqbrtrd φ 5 1 log A 1 2 log 2 1 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
594 254 593 eqbrtrd φ 5 1 log A 1 2 log 2 log 2 5 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
595 246 594 eqbrtrd φ 5 log A 1 2 log 2 log 2 5 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
596 238 595 eqbrtrd φ 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
597 211 596 eqbrtrd φ 5 log A 4 log A 5 2 log 2 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
598 205 597 eqbrtrd φ 5 log A 4 2 log 2 5 log A 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
599 198 598 eqbrtrd φ 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
600 192 599 eqbrtrd φ 2 log 2 5 5 log A 4 log A 5 log 2 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
601 189 600 eqbrtrd φ 2 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
602 184 601 eqbrtrd φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
603 179 602 eqbrtrd φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
604 174 603 eqbrtrd φ 2 1 log 2 5 log A 5 log 2 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
605 170 604 eqbrtrd φ 2 1 log A 5 log 2 log 2 5 5 log A 4 log 2 5 A + 2 log A 1 log 2 2 A 4 log A 3 log 2 4 A
606 158 605 eqbrtrd φ 2 1 log A 5 log 2 5 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A 4 log A 3 log 2 4 A
607 95 111 122 149 606 letrd φ 2 1 log A 5 log 2 5 + 1 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A 4 log A 3 log 2 4 A
608 35 607 eqbrtrd φ 2 1 log A log 2 5 + 1 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A 4 log A 3 log 2 4 A
609 427 39 429 syl2anc φ log 2 A = log A log 2
610 609 eqcomd φ log A log 2 = log 2 A
611 610 oveq1d φ log A log 2 5 = log 2 A 5
612 611 oveq1d φ log A log 2 5 + 1 = log 2 A 5 + 1
613 612 oveq1d φ log A log 2 5 + 1 log 2 = log 2 A 5 + 1 log 2
614 613 oveq2d φ 1 log A log 2 5 + 1 log 2 = 1 log 2 A 5 + 1 log 2
615 5cn 5
616 615 a1i φ 5
617 616 207 mulcld φ 5 log A 4
618 617 mulid1d φ 5 log A 4 1 = 5 log A 4
619 618 eqcomd φ 5 log A 4 = 5 log A 4 1
620 eqidd φ log 2 5 A = log 2 5 A
621 df-5 5 = 4 + 1
622 621 a1i φ 5 = 4 + 1
623 622 oveq2d φ log 2 5 = log 2 4 + 1
624 18 91 77 expaddd φ log 2 4 + 1 = log 2 4 log 2 1
625 623 624 eqtrd φ log 2 5 = log 2 4 log 2 1
626 476 oveq2d φ log 2 4 log 2 1 = log 2 4 log 2
627 625 626 eqtrd φ log 2 5 = log 2 4 log 2
628 627 oveq1d φ log 2 5 A = log 2 4 log 2 A
629 620 628 eqtrd φ log 2 5 A = log 2 4 log 2 A
630 117 18 3 mulassd φ log 2 4 log 2 A = log 2 4 log 2 A
631 629 630 eqtrd φ log 2 5 A = log 2 4 log 2 A
632 18 3 mulcomd φ log 2 A = A log 2
633 632 oveq2d φ log 2 4 log 2 A = log 2 4 A log 2
634 631 633 eqtrd φ log 2 5 A = log 2 4 A log 2
635 619 634 oveq12d φ 5 log A 4 log 2 5 A = 5 log A 4 1 log 2 4 A log 2
636 3 18 mulcld φ A log 2
637 3 18 11 26 mulne0d φ A log 2 0
638 186 117 53 636 120 637 divmuldivd φ 5 log A 4 log 2 4 1 A log 2 = 5 log A 4 1 log 2 4 A log 2
639 638 eqcomd φ 5 log A 4 1 log 2 4 A log 2 = 5 log A 4 log 2 4 1 A log 2
640 635 639 eqtrd φ 5 log A 4 log 2 5 A = 5 log A 4 log 2 4 1 A log 2
641 206 207 117 120 divassd φ 5 log A 4 log 2 4 = 5 log A 4 log 2 4
642 641 oveq1d φ 5 log A 4 log 2 4 1 A log 2 = 5 log A 4 log 2 4 1 A log 2
643 640 642 eqtrd φ 5 log A 4 log 2 5 A = 5 log A 4 log 2 4 1 A log 2
644 12 18 26 77 expdivd φ log A log 2 4 = log A 4 log 2 4
645 644 eqcomd φ log A 4 log 2 4 = log A log 2 4
646 645 oveq2d φ 5 log A 4 log 2 4 = 5 log A log 2 4
647 646 oveq1d φ 5 log A 4 log 2 4 1 A log 2 = 5 log A log 2 4 1 A log 2
648 643 647 eqtrd φ 5 log A 4 log 2 5 A = 5 log A log 2 4 1 A log 2
649 610 oveq1d φ log A log 2 4 = log 2 A 4
650 649 oveq2d φ 5 log A log 2 4 = 5 log 2 A 4
651 650 oveq1d φ 5 log A log 2 4 1 A log 2 = 5 log 2 A 4 1 A log 2
652 648 651 eqtrd φ 5 log A 4 log 2 5 A = 5 log 2 A 4 1 A log 2
653 342 77 expcld φ log 2 A 4
654 616 653 mulcld φ 5 log 2 A 4
655 39 rpne0d φ A 0
656 3 18 655 26 mulne0d φ A log 2 0
657 636 656 reccld φ 1 A log 2
658 654 657 mulcld φ 5 log 2 A 4 1 A log 2
659 658 addid1d φ 5 log 2 A 4 1 A log 2 + 0 = 5 log 2 A 4 1 A log 2
660 659 eqcomd φ 5 log 2 A 4 1 A log 2 = 5 log 2 A 4 1 A log 2 + 0
661 652 660 eqtrd φ 5 log A 4 log 2 5 A = 5 log 2 A 4 1 A log 2 + 0
662 614 661 oveq12d φ 1 log A log 2 5 + 1 log 2 5 log A 4 log 2 5 A = 1 log 2 A 5 + 1 log 2 5 log 2 A 4 1 A log 2 + 0
663 662 oveq2d φ 2 1 log A log 2 5 + 1 log 2 5 log A 4 log 2 5 A = 2 1 log 2 A 5 + 1 log 2 5 log 2 A 4 1 A log 2 + 0
664 1e2m1 1 = 2 1
665 664 a1i φ 1 = 2 1
666 665 oveq2d φ log A 1 = log A 2 1
667 666 oveq1d φ log A 1 A = log A 2 1 A
668 667 oveq2d φ 2 log 2 2 log A 1 A = 2 log 2 2 log A 2 1 A
669 663 668 oveq12d φ 2 1 log A log 2 5 + 1 log 2 5 log A 4 log 2 5 A + 2 log 2 2 log A 1 A = 2 1 log 2 A 5 + 1 log 2 5 log 2 A 4 1 A log 2 + 0 + 2 log 2 2 log A 2 1 A
670 4cn 4
671 670 a1i φ 4
672 671 117 581 3 120 655 divmuldivd φ 4 log 2 4 log A 3 A = 4 log A 3 log 2 4 A
673 672 eqcomd φ 4 log A 3 log 2 4 A = 4 log 2 4 log A 3 A
674 608 669 673 3brtr3d φ 2 1 log 2 A 5 + 1 log 2 5 log 2 A 4 1 A log 2 + 0 + 2 log 2 2 log A 2 1 A 4 log 2 4 log A 3 A