Metamath Proof Explorer


Theorem atanlogsublem

Description: Lemma for atanlogsub . (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion atanlogsublem A dom arctan 0 < A log 1 + i A log 1 i A π π

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 ax-icn i
3 simpl A dom arctan 0 < A A dom arctan
4 atandm2 A dom arctan A 1 i A 0 1 + i A 0
5 3 4 sylib A dom arctan 0 < A A 1 i A 0 1 + i A 0
6 5 simp1d A dom arctan 0 < A A
7 mulcl i A i A
8 2 6 7 sylancr A dom arctan 0 < A i A
9 addcl 1 i A 1 + i A
10 1 8 9 sylancr A dom arctan 0 < A 1 + i A
11 5 simp3d A dom arctan 0 < A 1 + i A 0
12 10 11 logcld A dom arctan 0 < A log 1 + i A
13 subcl 1 i A 1 i A
14 1 8 13 sylancr A dom arctan 0 < A 1 i A
15 5 simp2d A dom arctan 0 < A 1 i A 0
16 14 15 logcld A dom arctan 0 < A log 1 i A
17 12 16 imsubd A dom arctan 0 < A log 1 + i A log 1 i A = log 1 + i A log 1 i A
18 2 a1i A dom arctan 0 < A i
19 18 6 18 subdid A dom arctan 0 < A i A i = i A i i
20 ixi i i = 1
21 20 oveq2i i A i i = i A -1
22 subneg i A 1 i A -1 = i A + 1
23 8 1 22 sylancl A dom arctan 0 < A i A -1 = i A + 1
24 21 23 syl5eq A dom arctan 0 < A i A i i = i A + 1
25 addcom i A 1 i A + 1 = 1 + i A
26 8 1 25 sylancl A dom arctan 0 < A i A + 1 = 1 + i A
27 19 24 26 3eqtrd A dom arctan 0 < A i A i = 1 + i A
28 27 fveq2d A dom arctan 0 < A log i A i = log 1 + i A
29 subcl A i A i
30 6 2 29 sylancl A dom arctan 0 < A A i
31 resub A i A i = A i
32 6 2 31 sylancl A dom arctan 0 < A A i = A i
33 rei i = 0
34 33 oveq2i A i = A 0
35 6 recld A dom arctan 0 < A A
36 35 recnd A dom arctan 0 < A A
37 36 subid1d A dom arctan 0 < A A 0 = A
38 34 37 syl5eq A dom arctan 0 < A A i = A
39 32 38 eqtrd A dom arctan 0 < A A i = A
40 gt0ne0 A 0 < A A 0
41 35 40 sylancom A dom arctan 0 < A A 0
42 39 41 eqnetrd A dom arctan 0 < A A i 0
43 fveq2 A i = 0 A i = 0
44 re0 0 = 0
45 43 44 syl6eq A i = 0 A i = 0
46 45 necon3i A i 0 A i 0
47 42 46 syl A dom arctan 0 < A A i 0
48 simpr A dom arctan 0 < A 0 < A
49 0re 0
50 ltle 0 A 0 < A 0 A
51 49 35 50 sylancr A dom arctan 0 < A 0 < A 0 A
52 48 51 mpd A dom arctan 0 < A 0 A
53 52 39 breqtrrd A dom arctan 0 < A 0 A i
54 logimul A i A i 0 0 A i log i A i = log A i + i π 2
55 30 47 53 54 syl3anc A dom arctan 0 < A log i A i = log A i + i π 2
56 28 55 eqtr3d A dom arctan 0 < A log 1 + i A = log A i + i π 2
57 56 fveq2d A dom arctan 0 < A log 1 + i A = log A i + i π 2
58 30 47 logcld A dom arctan 0 < A log A i
59 halfpire π 2
60 59 recni π 2
61 2 60 mulcli i π 2
62 imadd log A i i π 2 log A i + i π 2 = log A i + i π 2
63 58 61 62 sylancl A dom arctan 0 < A log A i + i π 2 = log A i + i π 2
64 reim π 2 π 2 = i π 2
65 60 64 ax-mp π 2 = i π 2
66 rere π 2 π 2 = π 2
67 59 66 ax-mp π 2 = π 2
68 65 67 eqtr3i i π 2 = π 2
69 68 oveq2i log A i + i π 2 = log A i + π 2
70 63 69 syl6eq A dom arctan 0 < A log A i + i π 2 = log A i + π 2
71 57 70 eqtrd A dom arctan 0 < A log 1 + i A = log A i + π 2
72 addcl A i A + i
73 6 2 72 sylancl A dom arctan 0 < A A + i
74 mulcl i A + i i A + i
75 2 73 74 sylancr A dom arctan 0 < A i A + i
76 reim A + i A + i = i A + i
77 73 76 syl A dom arctan 0 < A A + i = i A + i
78 readd A i A + i = A + i
79 6 2 78 sylancl A dom arctan 0 < A A + i = A + i
80 33 oveq2i A + i = A + 0
81 36 addid1d A dom arctan 0 < A A + 0 = A
82 80 81 syl5eq A dom arctan 0 < A A + i = A
83 79 82 eqtrd A dom arctan 0 < A A + i = A
84 77 83 eqtr3d A dom arctan 0 < A i A + i = A
85 48 84 breqtrrd A dom arctan 0 < A 0 < i A + i
86 logneg2 i A + i 0 < i A + i log i A + i = log i A + i i π
87 75 85 86 syl2anc A dom arctan 0 < A log i A + i = log i A + i i π
88 18 6 18 adddid A dom arctan 0 < A i A + i = i A + i i
89 20 oveq2i i A + i i = i A + -1
90 negsub i A 1 i A + -1 = i A 1
91 8 1 90 sylancl A dom arctan 0 < A i A + -1 = i A 1
92 89 91 syl5eq A dom arctan 0 < A i A + i i = i A 1
93 88 92 eqtrd A dom arctan 0 < A i A + i = i A 1
94 93 negeqd A dom arctan 0 < A i A + i = i A 1
95 negsubdi2 i A 1 i A 1 = 1 i A
96 8 1 95 sylancl A dom arctan 0 < A i A 1 = 1 i A
97 94 96 eqtrd A dom arctan 0 < A i A + i = 1 i A
98 97 fveq2d A dom arctan 0 < A log i A + i = log 1 i A
99 83 41 eqnetrd A dom arctan 0 < A A + i 0
100 fveq2 A + i = 0 A + i = 0
101 100 44 syl6eq A + i = 0 A + i = 0
102 101 necon3i A + i 0 A + i 0
103 99 102 syl A dom arctan 0 < A A + i 0
104 73 103 logcld A dom arctan 0 < A log A + i
105 61 a1i A dom arctan 0 < A i π 2
106 picn π
107 2 106 mulcli i π
108 107 a1i A dom arctan 0 < A i π
109 52 83 breqtrrd A dom arctan 0 < A 0 A + i
110 logimul A + i A + i 0 0 A + i log i A + i = log A + i + i π 2
111 73 103 109 110 syl3anc A dom arctan 0 < A log i A + i = log A + i + i π 2
112 111 oveq1d A dom arctan 0 < A log i A + i i π = log A + i + i π 2 - i π
113 104 105 108 112 assraddsubd A dom arctan 0 < A log i A + i i π = log A + i + i π 2 - i π
114 87 98 113 3eqtr3d A dom arctan 0 < A log 1 i A = log A + i + i π 2 - i π
115 114 fveq2d A dom arctan 0 < A log 1 i A = log A + i + i π 2 - i π
116 61 107 subcli i π 2 i π
117 imadd log A + i i π 2 i π log A + i + i π 2 - i π = log A + i + i π 2 i π
118 104 116 117 sylancl A dom arctan 0 < A log A + i + i π 2 - i π = log A + i + i π 2 i π
119 imsub i π 2 i π i π 2 i π = i π 2 i π
120 61 107 119 mp2an i π 2 i π = i π 2 i π
121 reim π π = i π
122 106 121 ax-mp π = i π
123 pire π
124 rere π π = π
125 123 124 ax-mp π = π
126 122 125 eqtr3i i π = π
127 68 126 oveq12i i π 2 i π = π 2 π
128 60 negcli π 2
129 106 60 negsubi π + π 2 = π π 2
130 pidiv2halves π 2 + π 2 = π
131 106 60 60 130 subaddrii π π 2 = π 2
132 129 131 eqtri π + π 2 = π 2
133 60 106 128 132 subaddrii π 2 π = π 2
134 120 127 133 3eqtri i π 2 i π = π 2
135 134 oveq2i log A + i + i π 2 i π = log A + i + π 2
136 118 135 syl6eq A dom arctan 0 < A log A + i + i π 2 - i π = log A + i + π 2
137 115 136 eqtrd A dom arctan 0 < A log 1 i A = log A + i + π 2
138 71 137 oveq12d A dom arctan 0 < A log 1 + i A log 1 i A = log A i + π 2 - log A + i + π 2
139 58 imcld A dom arctan 0 < A log A i
140 139 recnd A dom arctan 0 < A log A i
141 60 a1i A dom arctan 0 < A π 2
142 104 imcld A dom arctan 0 < A log A + i
143 142 recnd A dom arctan 0 < A log A + i
144 128 a1i A dom arctan 0 < A π 2
145 140 141 143 144 addsub4d A dom arctan 0 < A log A i + π 2 - log A + i + π 2 = log A i log A + i + π 2 - π 2
146 60 60 subnegi π 2 π 2 = π 2 + π 2
147 146 130 eqtri π 2 π 2 = π
148 147 oveq2i log A i log A + i + π 2 - π 2 = log A i - log A + i + π
149 145 148 syl6eq A dom arctan 0 < A log A i + π 2 - log A + i + π 2 = log A i - log A + i + π
150 17 138 149 3eqtrd A dom arctan 0 < A log 1 + i A log 1 i A = log A i - log A + i + π
151 139 142 resubcld A dom arctan 0 < A log A i log A + i
152 readdcl log A i log A + i π log A i - log A + i + π
153 151 123 152 sylancl A dom arctan 0 < A log A i - log A + i + π
154 123 renegcli π
155 154 recni π
156 155 106 negsubi - π + π = - π - π
157 154 a1i A dom arctan 0 < A π
158 142 renegcld A dom arctan 0 < A log A + i
159 30 47 logimcld A dom arctan 0 < A π < log A i log A i π
160 159 simpld A dom arctan 0 < A π < log A i
161 73 103 logimcld A dom arctan 0 < A π < log A + i log A + i π
162 161 simprd A dom arctan 0 < A log A + i π
163 leneg log A + i π log A + i π π log A + i
164 142 123 163 sylancl A dom arctan 0 < A log A + i π π log A + i
165 162 164 mpbid A dom arctan 0 < A π log A + i
166 157 157 139 158 160 165 ltleaddd A dom arctan 0 < A - π + π < log A i + log A + i
167 140 143 negsubd A dom arctan 0 < A log A i + log A + i = log A i log A + i
168 166 167 breqtrd A dom arctan 0 < A - π + π < log A i log A + i
169 156 168 eqbrtrrid A dom arctan 0 < A - π - π < log A i log A + i
170 123 a1i A dom arctan 0 < A π
171 157 170 151 ltsubaddd A dom arctan 0 < A - π - π < log A i log A + i π < log A i - log A + i + π
172 169 171 mpbid A dom arctan 0 < A π < log A i - log A + i + π
173 0red A dom arctan 0 < A 0
174 6 imcld A dom arctan 0 < A A
175 peano2rem A A 1
176 174 175 syl A dom arctan 0 < A A 1
177 peano2re A A + 1
178 174 177 syl A dom arctan 0 < A A + 1
179 174 ltm1d A dom arctan 0 < A A 1 < A
180 174 ltp1d A dom arctan 0 < A A < A + 1
181 176 174 178 179 180 lttrd A dom arctan 0 < A A 1 < A + 1
182 ltdiv1 A 1 A + 1 A 0 < A A 1 < A + 1 A 1 A < A + 1 A
183 176 178 35 48 182 syl112anc A dom arctan 0 < A A 1 < A + 1 A 1 A < A + 1 A
184 181 183 mpbid A dom arctan 0 < A A 1 A < A + 1 A
185 imsub A i A i = A i
186 6 2 185 sylancl A dom arctan 0 < A A i = A i
187 imi i = 1
188 187 oveq2i A i = A 1
189 186 188 syl6eq A dom arctan 0 < A A i = A 1
190 189 39 oveq12d A dom arctan 0 < A A i A i = A 1 A
191 imadd A i A + i = A + i
192 6 2 191 sylancl A dom arctan 0 < A A + i = A + i
193 187 oveq2i A + i = A + 1
194 192 193 syl6eq A dom arctan 0 < A A + i = A + 1
195 194 83 oveq12d A dom arctan 0 < A A + i A + i = A + 1 A
196 184 190 195 3brtr4d A dom arctan 0 < A A i A i < A + i A + i
197 tanarg A i A i 0 tan log A i = A i A i
198 30 42 197 syl2anc A dom arctan 0 < A tan log A i = A i A i
199 tanarg A + i A + i 0 tan log A + i = A + i A + i
200 73 99 199 syl2anc A dom arctan 0 < A tan log A + i = A + i A + i
201 196 198 200 3brtr4d A dom arctan 0 < A tan log A i < tan log A + i
202 48 39 breqtrrd A dom arctan 0 < A 0 < A i
203 argregt0 A i 0 < A i log A i π 2 π 2
204 30 202 203 syl2anc A dom arctan 0 < A log A i π 2 π 2
205 48 83 breqtrrd A dom arctan 0 < A 0 < A + i
206 argregt0 A + i 0 < A + i log A + i π 2 π 2
207 73 205 206 syl2anc A dom arctan 0 < A log A + i π 2 π 2
208 tanord log A i π 2 π 2 log A + i π 2 π 2 log A i < log A + i tan log A i < tan log A + i
209 204 207 208 syl2anc A dom arctan 0 < A log A i < log A + i tan log A i < tan log A + i
210 201 209 mpbird A dom arctan 0 < A log A i < log A + i
211 143 addid2d A dom arctan 0 < A 0 + log A + i = log A + i
212 210 211 breqtrrd A dom arctan 0 < A log A i < 0 + log A + i
213 139 142 173 ltsubaddd A dom arctan 0 < A log A i log A + i < 0 log A i < 0 + log A + i
214 212 213 mpbird A dom arctan 0 < A log A i log A + i < 0
215 151 173 170 214 ltadd1dd A dom arctan 0 < A log A i - log A + i + π < 0 + π
216 106 addid2i 0 + π = π
217 215 216 breqtrdi A dom arctan 0 < A log A i - log A + i + π < π
218 154 rexri π *
219 123 rexri π *
220 elioo2 π * π * log A i - log A + i + π π π log A i - log A + i + π π < log A i - log A + i + π log A i - log A + i + π < π
221 218 219 220 mp2an log A i - log A + i + π π π log A i - log A + i + π π < log A i - log A + i + π log A i - log A + i + π < π
222 153 172 217 221 syl3anbrc A dom arctan 0 < A log A i - log A + i + π π π
223 150 222 eqeltrd A dom arctan 0 < A log 1 + i A log 1 i A π π