Metamath Proof Explorer


Theorem axlowdim

Description: The general lower dimension axiom. Take a dimension N greater than or equal to three. Then, there are three non-colinear points in N dimensional space that are equidistant from N - 1 distinct points. Derived from remarks inTarski's System of Geometry, Alfred Tarski and Steven Givant, Bulletin of Symbolic Logic, Volume 5, Number 2 (1999), 175-214. (Contributed by Scott Fenton, 22-Apr-2013)

Ref Expression
Assertion axlowdim N3px𝔼Ny𝔼Nz𝔼Np:1N11-1𝔼Ni2N1p1xCgrpixp1yCgrpiyp1zCgrpiz¬xBtwnyzyBtwnzxzBtwnxy

Proof

Step Hyp Ref Expression
1 uzuzle23 N3N2
2 0re 0
3 2 2 axlowdimlem5 N210203N×0𝔼N
4 1 3 syl N310203N×0𝔼N
5 1re 1
6 5 2 axlowdimlem5 N211203N×0𝔼N
7 1 6 syl N311203N×0𝔼N
8 2 5 axlowdimlem5 N210213N×0𝔼N
9 1 8 syl N310213N×0𝔼N
10 eqid k1N1ifk=1311N3×0k+111Nk+1×0=k1N1ifk=1311N3×0k+111Nk+1×0
11 10 axlowdimlem15 N3k1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼N
12 eqid 311N3×0=311N3×0
13 eqid i+111Ni+1×0=i+111Ni+1×0
14 eqid 10203N×0=10203N×0
15 12 13 14 2 2 axlowdimlem17 N3i2N1311N3×010203N×0Cgri+111Ni+1×010203N×0
16 eqid 11203N×0=11203N×0
17 12 13 16 5 2 axlowdimlem17 N3i2N1311N3×011203N×0Cgri+111Ni+1×011203N×0
18 eqid 10213N×0=10213N×0
19 12 13 18 2 5 axlowdimlem17 N3i2N1311N3×010213N×0Cgri+111Ni+1×010213N×0
20 1zzd 3N3N1
21 peano2zm NN1
22 21 3ad2ant2 3N3NN1
23 2m1e1 21=1
24 2re 2
25 3re 3
26 2lt3 2<3
27 24 25 26 ltleii 23
28 zre NN
29 letr 23N233N2N
30 24 25 28 29 mp3an12i N233N2N
31 27 30 mpani N3N2N
32 31 imp N3N2N
33 32 3adant1 3N3N2N
34 28 3ad2ant2 3N3NN
35 lesub1 2N12N21N1
36 24 5 35 mp3an13 N2N21N1
37 34 36 syl 3N3N2N21N1
38 33 37 mpbid 3N3N21N1
39 23 38 eqbrtrrid 3N3N1N1
40 20 22 39 3jca 3N3N1N11N1
41 eluz2 N33N3N
42 eluz2 N111N11N1
43 40 41 42 3imtr4i N3N11
44 eluzfz1 N1111N1
45 43 44 syl N311N1
46 45 adantr N3i2N111N1
47 eqeq1 k=1k=11=1
48 oveq1 k=1k+1=1+1
49 48 opeq1d k=1k+11=1+11
50 49 sneqd k=1k+11=1+11
51 48 sneqd k=1k+1=1+1
52 51 difeq2d k=11Nk+1=1N1+1
53 52 xpeq1d k=11Nk+1×0=1N1+1×0
54 50 53 uneq12d k=1k+111Nk+1×0=1+111N1+1×0
55 47 54 ifbieq2d k=1ifk=1311N3×0k+111Nk+1×0=if1=1311N3×01+111N1+1×0
56 snex 31V
57 ovex 1NV
58 57 difexi 1N3V
59 snex 0V
60 58 59 xpex 1N3×0V
61 56 60 unex 311N3×0V
62 snex 1+11V
63 57 difexi 1N1+1V
64 63 59 xpex 1N1+1×0V
65 62 64 unex 1+111N1+1×0V
66 61 65 ifex if1=1311N3×01+111N1+1×0V
67 55 10 66 fvmpt 11N1k1N1ifk=1311N3×0k+111Nk+1×01=if1=1311N3×01+111N1+1×0
68 46 67 syl N3i2N1k1N1ifk=1311N3×0k+111Nk+1×01=if1=1311N3×01+111N1+1×0
69 eqid 1=1
70 69 iftruei if1=1311N3×01+111N1+1×0=311N3×0
71 68 70 eqtrdi N3i2N1k1N1ifk=1311N3×0k+111Nk+1×01=311N3×0
72 71 opeq1d N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0=311N3×010203N×0
73 2eluzge1 21
74 fzss1 212N11N1
75 73 74 ax-mp 2N11N1
76 75 sseli i2N1i1N1
77 76 adantl N3i2N1i1N1
78 eqeq1 k=ik=1i=1
79 oveq1 k=ik+1=i+1
80 79 opeq1d k=ik+11=i+11
81 80 sneqd k=ik+11=i+11
82 79 sneqd k=ik+1=i+1
83 82 difeq2d k=i1Nk+1=1Ni+1
84 83 xpeq1d k=i1Nk+1×0=1Ni+1×0
85 81 84 uneq12d k=ik+111Nk+1×0=i+111Ni+1×0
86 78 85 ifbieq2d k=iifk=1311N3×0k+111Nk+1×0=ifi=1311N3×0i+111Ni+1×0
87 snex i+11V
88 57 difexi 1Ni+1V
89 88 59 xpex 1Ni+1×0V
90 87 89 unex i+111Ni+1×0V
91 61 90 ifex ifi=1311N3×0i+111Ni+1×0V
92 86 10 91 fvmpt i1N1k1N1ifk=1311N3×0k+111Nk+1×0i=ifi=1311N3×0i+111Ni+1×0
93 77 92 syl N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0i=ifi=1311N3×0i+111Ni+1×0
94 1lt2 1<2
95 5 24 ltnlei 1<2¬21
96 94 95 mpbi ¬21
97 96 intnanr ¬211N1
98 1z 1
99 2z 2
100 eluzelz N3N
101 100 21 syl N3N1
102 elfz 12N112N1211N1
103 98 99 101 102 mp3an12i N312N1211N1
104 97 103 mtbiri N3¬12N1
105 eleq1 i=1i2N112N1
106 105 notbid i=1¬i2N1¬12N1
107 104 106 syl5ibrcom N3i=1¬i2N1
108 107 con2d N3i2N1¬i=1
109 108 imp N3i2N1¬i=1
110 109 iffalsed N3i2N1ifi=1311N3×0i+111Ni+1×0=i+111Ni+1×0
111 93 110 eqtrd N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0i=i+111Ni+1×0
112 111 opeq1d N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0i10203N×0=i+111Ni+1×010203N×0
113 72 112 breq12d N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0311N3×010203N×0Cgri+111Ni+1×010203N×0
114 71 opeq1d N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0111203N×0=311N3×011203N×0
115 111 opeq1d N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0i11203N×0=i+111Ni+1×011203N×0
116 114 115 breq12d N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0311N3×011203N×0Cgri+111Ni+1×011203N×0
117 45 67 syl N3k1N1ifk=1311N3×0k+111Nk+1×01=if1=1311N3×01+111N1+1×0
118 117 70 eqtrdi N3k1N1ifk=1311N3×0k+111Nk+1×01=311N3×0
119 118 opeq1d N3k1N1ifk=1311N3×0k+111Nk+1×0110213N×0=311N3×010213N×0
120 119 adantr N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0110213N×0=311N3×010213N×0
121 111 opeq1d N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0i10213N×0=i+111Ni+1×010213N×0
122 120 121 breq12d N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0110213N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10213N×0311N3×010213N×0Cgri+111Ni+1×010213N×0
123 113 116 122 3anbi123d N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×0110213N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10213N×0311N3×010203N×0Cgri+111Ni+1×010203N×0311N3×011203N×0Cgri+111Ni+1×011203N×0311N3×010213N×0Cgri+111Ni+1×010213N×0
124 15 17 19 123 mpbir3and N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×0110213N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10213N×0
125 124 ralrimiva N3i2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×0110213N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10213N×0
126 14 16 18 axlowdimlem6 N2¬10203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0
127 1 126 syl N3¬10203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0
128 opeq2 x=10203N×0k1N1ifk=1311N3×0k+111Nk+1×01x=k1N1ifk=1311N3×0k+111Nk+1×0110203N×0
129 opeq2 x=10203N×0k1N1ifk=1311N3×0k+111Nk+1×0ix=k1N1ifk=1311N3×0k+111Nk+1×0i10203N×0
130 128 129 breq12d x=10203N×0k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0
131 130 3anbi1d x=10203N×0k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0izk1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz
132 131 ralbidv x=10203N×0i2N1k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0izi2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz
133 breq1 x=10203N×0xBtwnyz10203N×0Btwnyz
134 opeq2 x=10203N×0zx=z10203N×0
135 134 breq2d x=10203N×0yBtwnzxyBtwnz10203N×0
136 opeq1 x=10203N×0xy=10203N×0y
137 136 breq2d x=10203N×0zBtwnxyzBtwn10203N×0y
138 133 135 137 3orbi123d x=10203N×0xBtwnyzyBtwnzxzBtwnxy10203N×0BtwnyzyBtwnz10203N×0zBtwn10203N×0y
139 138 notbid x=10203N×0¬xBtwnyzyBtwnzxzBtwnxy¬10203N×0BtwnyzyBtwnz10203N×0zBtwn10203N×0y
140 132 139 3anbi23d x=10203N×0k1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬xBtwnyzyBtwnzxzBtwnxyk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬10203N×0BtwnyzyBtwnz10203N×0zBtwn10203N×0y
141 opeq2 y=11203N×0k1N1ifk=1311N3×0k+111Nk+1×01y=k1N1ifk=1311N3×0k+111Nk+1×0111203N×0
142 opeq2 y=11203N×0k1N1ifk=1311N3×0k+111Nk+1×0iy=k1N1ifk=1311N3×0k+111Nk+1×0i11203N×0
143 141 142 breq12d y=11203N×0k1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0
144 143 3anbi2d y=11203N×0k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0izk1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz
145 144 ralbidv y=11203N×0i2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0izi2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz
146 opeq1 y=11203N×0yz=11203N×0z
147 146 breq2d y=11203N×010203N×0Btwnyz10203N×0Btwn11203N×0z
148 breq1 y=11203N×0yBtwnz10203N×011203N×0Btwnz10203N×0
149 opeq2 y=11203N×010203N×0y=10203N×011203N×0
150 149 breq2d y=11203N×0zBtwn10203N×0yzBtwn10203N×011203N×0
151 147 148 150 3orbi123d y=11203N×010203N×0BtwnyzyBtwnz10203N×0zBtwn10203N×0y10203N×0Btwn11203N×0z11203N×0Btwnz10203N×0zBtwn10203N×011203N×0
152 151 notbid y=11203N×0¬10203N×0BtwnyzyBtwnz10203N×0zBtwn10203N×0y¬10203N×0Btwn11203N×0z11203N×0Btwnz10203N×0zBtwn10203N×011203N×0
153 145 152 3anbi23d y=11203N×0k1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬10203N×0BtwnyzyBtwnz10203N×0zBtwn10203N×0yk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬10203N×0Btwn11203N×0z11203N×0Btwnz10203N×0zBtwn10203N×011203N×0
154 opeq2 z=10213N×0k1N1ifk=1311N3×0k+111Nk+1×01z=k1N1ifk=1311N3×0k+111Nk+1×0110213N×0
155 opeq2 z=10213N×0k1N1ifk=1311N3×0k+111Nk+1×0iz=k1N1ifk=1311N3×0k+111Nk+1×0i10213N×0
156 154 155 breq12d z=10213N×0k1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0izk1N1ifk=1311N3×0k+111Nk+1×0110213N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10213N×0
157 156 3anbi3d z=10213N×0k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0izk1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×0110213N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10213N×0
158 157 ralbidv z=10213N×0i2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0izi2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×0110213N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10213N×0
159 opeq2 z=10213N×011203N×0z=11203N×010213N×0
160 159 breq2d z=10213N×010203N×0Btwn11203N×0z10203N×0Btwn11203N×010213N×0
161 opeq1 z=10213N×0z10203N×0=10213N×010203N×0
162 161 breq2d z=10213N×011203N×0Btwnz10203N×011203N×0Btwn10213N×010203N×0
163 breq1 z=10213N×0zBtwn10203N×011203N×010213N×0Btwn10203N×011203N×0
164 160 162 163 3orbi123d z=10213N×010203N×0Btwn11203N×0z11203N×0Btwnz10203N×0zBtwn10203N×011203N×010203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0
165 164 notbid z=10213N×0¬10203N×0Btwn11203N×0z11203N×0Btwnz10203N×0zBtwn10203N×011203N×0¬10203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0
166 158 165 3anbi23d z=10213N×0k1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬10203N×0Btwn11203N×0z11203N×0Btwnz10203N×0zBtwn10203N×011203N×0k1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×0110213N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10213N×0¬10203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0
167 140 153 166 rspc3ev 10203N×0𝔼N11203N×0𝔼N10213N×0𝔼Nk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×0110203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10203N×0k1N1ifk=1311N3×0k+111Nk+1×0111203N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i11203N×0k1N1ifk=1311N3×0k+111Nk+1×0110213N×0Cgrk1N1ifk=1311N3×0k+111Nk+1×0i10213N×0¬10203N×0Btwn11203N×010213N×011203N×0Btwn10213N×010203N×010213N×0Btwn10203N×011203N×0x𝔼Ny𝔼Nz𝔼Nk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬xBtwnyzyBtwnzxzBtwnxy
168 4 7 9 11 125 127 167 syl33anc N3x𝔼Ny𝔼Nz𝔼Nk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬xBtwnyzyBtwnzxzBtwnxy
169 ovex 1N1V
170 169 mptex k1N1ifk=1311N3×0k+111Nk+1×0V
171 f1eq1 p=k1N1ifk=1311N3×0k+111Nk+1×0p:1N11-1𝔼Nk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼N
172 fveq1 p=k1N1ifk=1311N3×0k+111Nk+1×0p1=k1N1ifk=1311N3×0k+111Nk+1×01
173 172 opeq1d p=k1N1ifk=1311N3×0k+111Nk+1×0p1x=k1N1ifk=1311N3×0k+111Nk+1×01x
174 fveq1 p=k1N1ifk=1311N3×0k+111Nk+1×0pi=k1N1ifk=1311N3×0k+111Nk+1×0i
175 174 opeq1d p=k1N1ifk=1311N3×0k+111Nk+1×0pix=k1N1ifk=1311N3×0k+111Nk+1×0ix
176 173 175 breq12d p=k1N1ifk=1311N3×0k+111Nk+1×0p1xCgrpixk1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ix
177 172 opeq1d p=k1N1ifk=1311N3×0k+111Nk+1×0p1y=k1N1ifk=1311N3×0k+111Nk+1×01y
178 174 opeq1d p=k1N1ifk=1311N3×0k+111Nk+1×0piy=k1N1ifk=1311N3×0k+111Nk+1×0iy
179 177 178 breq12d p=k1N1ifk=1311N3×0k+111Nk+1×0p1yCgrpiyk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iy
180 172 opeq1d p=k1N1ifk=1311N3×0k+111Nk+1×0p1z=k1N1ifk=1311N3×0k+111Nk+1×01z
181 174 opeq1d p=k1N1ifk=1311N3×0k+111Nk+1×0piz=k1N1ifk=1311N3×0k+111Nk+1×0iz
182 180 181 breq12d p=k1N1ifk=1311N3×0k+111Nk+1×0p1zCgrpizk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz
183 176 179 182 3anbi123d p=k1N1ifk=1311N3×0k+111Nk+1×0p1xCgrpixp1yCgrpiyp1zCgrpizk1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz
184 183 ralbidv p=k1N1ifk=1311N3×0k+111Nk+1×0i2N1p1xCgrpixp1yCgrpiyp1zCgrpizi2N1k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz
185 171 184 3anbi12d p=k1N1ifk=1311N3×0k+111Nk+1×0p:1N11-1𝔼Ni2N1p1xCgrpixp1yCgrpiyp1zCgrpiz¬xBtwnyzyBtwnzxzBtwnxyk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬xBtwnyzyBtwnzxzBtwnxy
186 185 rexbidv p=k1N1ifk=1311N3×0k+111Nk+1×0z𝔼Np:1N11-1𝔼Ni2N1p1xCgrpixp1yCgrpiyp1zCgrpiz¬xBtwnyzyBtwnzxzBtwnxyz𝔼Nk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬xBtwnyzyBtwnzxzBtwnxy
187 186 2rexbidv p=k1N1ifk=1311N3×0k+111Nk+1×0x𝔼Ny𝔼Nz𝔼Np:1N11-1𝔼Ni2N1p1xCgrpixp1yCgrpiyp1zCgrpiz¬xBtwnyzyBtwnzxzBtwnxyx𝔼Ny𝔼Nz𝔼Nk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬xBtwnyzyBtwnzxzBtwnxy
188 170 187 spcev x𝔼Ny𝔼Nz𝔼Nk1N1ifk=1311N3×0k+111Nk+1×0:1N11-1𝔼Ni2N1k1N1ifk=1311N3×0k+111Nk+1×01xCgrk1N1ifk=1311N3×0k+111Nk+1×0ixk1N1ifk=1311N3×0k+111Nk+1×01yCgrk1N1ifk=1311N3×0k+111Nk+1×0iyk1N1ifk=1311N3×0k+111Nk+1×01zCgrk1N1ifk=1311N3×0k+111Nk+1×0iz¬xBtwnyzyBtwnzxzBtwnxypx𝔼Ny𝔼Nz𝔼Np:1N11-1𝔼Ni2N1p1xCgrpixp1yCgrpiyp1zCgrpiz¬xBtwnyzyBtwnzxzBtwnxy
189 168 188 syl N3px𝔼Ny𝔼Nz𝔼Np:1N11-1𝔼Ni2N1p1xCgrpixp1yCgrpiyp1zCgrpiz¬xBtwnyzyBtwnzxzBtwnxy