Metamath Proof Explorer


Theorem cayhamlem4

Description: Lemma for cayleyhamilton . (Contributed by AV, 25-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses chcoeffeq.a A=NMatR
chcoeffeq.b B=BaseA
chcoeffeq.p P=Poly1R
chcoeffeq.y Y=NMatP
chcoeffeq.r ×˙=Y
chcoeffeq.s -˙=-Y
chcoeffeq.0 0˙=0Y
chcoeffeq.t T=NmatToPolyMatR
chcoeffeq.c C=NCharPlyMatR
chcoeffeq.k K=CM
chcoeffeq.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
chcoeffeq.w W=BaseY
chcoeffeq.1 1˙=1A
chcoeffeq.m ˙=A
chcoeffeq.u U=NcPolyMatToMatR
cayhamlem.e1 ×˙=mulGrpA
cayhamlem.e2 E=mulGrpY
Assertion cayhamlem4 NFinRCRingMBsbB0sAn0coe1Kn˙n×˙M=UYn0nETM×˙Gn

Proof

Step Hyp Ref Expression
1 chcoeffeq.a A=NMatR
2 chcoeffeq.b B=BaseA
3 chcoeffeq.p P=Poly1R
4 chcoeffeq.y Y=NMatP
5 chcoeffeq.r ×˙=Y
6 chcoeffeq.s -˙=-Y
7 chcoeffeq.0 0˙=0Y
8 chcoeffeq.t T=NmatToPolyMatR
9 chcoeffeq.c C=NCharPlyMatR
10 chcoeffeq.k K=CM
11 chcoeffeq.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
12 chcoeffeq.w W=BaseY
13 chcoeffeq.1 1˙=1A
14 chcoeffeq.m ˙=A
15 chcoeffeq.u U=NcPolyMatToMatR
16 cayhamlem.e1 ×˙=mulGrpA
17 cayhamlem.e2 E=mulGrpY
18 id An0coe1Kn˙n×˙M=An0n×˙MAUGnAn0coe1Kn˙n×˙M=An0n×˙MAUGn
19 simp1 NFinRCRingMBNFin
20 19 ad2antrr NFinRCRingMBsbB0sNFin
21 crngring RCRingRRing
22 21 3ad2ant2 NFinRCRingMBRRing
23 22 ad2antrr NFinRCRingMBsbB0sRRing
24 eqid 0A=0A
25 1 matring NFinRRingARing
26 21 25 sylan2 NFinRCRingARing
27 ringcmn ARingACMnd
28 26 27 syl NFinRCRingACMnd
29 28 3adant3 NFinRCRingMBACMnd
30 29 ad2antrr NFinRCRingMBsbB0sACMnd
31 nn0ex 0V
32 31 a1i NFinRCRingMBsbB0s0V
33 20 23 25 syl2anc NFinRCRingMBsbB0sARing
34 33 adantr NFinRCRingMBsbB0sn0ARing
35 eqid mulGrpA=mulGrpA
36 35 2 mgpbas B=BasemulGrpA
37 19 22 25 syl2anc NFinRCRingMBARing
38 35 ringmgp ARingmulGrpAMnd
39 37 38 syl NFinRCRingMBmulGrpAMnd
40 39 ad3antrrr NFinRCRingMBsbB0sn0mulGrpAMnd
41 simpr NFinRCRingMBsbB0sn0n0
42 simpll3 NFinRCRingMBsbB0sMB
43 42 adantr NFinRCRingMBsbB0sn0MB
44 36 16 40 41 43 mulgnn0cld NFinRCRingMBsbB0sn0n×˙MB
45 eqid NConstPolyMatR=NConstPolyMatR
46 1 2 45 15 cpm2mf NFinRRingU:NConstPolyMatRB
47 19 22 46 syl2anc NFinRCRingMBU:NConstPolyMatRB
48 47 ad3antrrr NFinRCRingMBsbB0sn0U:NConstPolyMatRB
49 simplr NFinRCRingMBsbB0ss
50 simpr NFinRCRingMBsbB0sbB0s
51 1 2 3 4 5 6 7 8 11 45 chfacfisfcpmat NFinRRingMBsbB0sG:0NConstPolyMatR
52 20 23 42 49 50 51 syl32anc NFinRCRingMBsbB0sG:0NConstPolyMatR
53 52 ffvelcdmda NFinRCRingMBsbB0sn0GnNConstPolyMatR
54 48 53 ffvelcdmd NFinRCRingMBsbB0sn0UGnB
55 eqid A=A
56 2 55 ringcl ARingn×˙MBUGnBn×˙MAUGnB
57 34 44 54 56 syl3anc NFinRCRingMBsbB0sn0n×˙MAUGnB
58 57 fmpttd NFinRCRingMBsbB0sn0n×˙MAUGn:0B
59 fvexd NFinRCRingMBsbB0s0AV
60 ovexd NFinRCRingMBsbB0sn0n×˙MAUGnV
61 1 2 3 4 5 6 7 8 11 chfacffsupp NFinRCRingMBsbB0sfinSupp0YG
62 61 anassrs NFinRCRingMBsbB0sfinSupp0YG
63 ovex NConstPolyMatRV
64 63 31 pm3.2i NConstPolyMatRV0V
65 elmapg NConstPolyMatRV0VGNConstPolyMatR0G:0NConstPolyMatR
66 64 65 mp1i NFinRCRingMBsbB0sGNConstPolyMatR0G:0NConstPolyMatR
67 52 66 mpbird NFinRCRingMBsbB0sGNConstPolyMatR0
68 fvex 0YV
69 fsuppmapnn0ub GNConstPolyMatR00YVfinSupp0YGw0z0w<zGz=0Y
70 67 68 69 sylancl NFinRCRingMBsbB0sfinSupp0YGw0z0w<zGz=0Y
71 csbov12g z0z/nn×˙MAUGn=z/nn×˙MAz/nUGn
72 csbov1g z0z/nn×˙M=z/nn×˙M
73 csbvarg z0z/nn=z
74 73 oveq1d z0z/nn×˙M=z×˙M
75 72 74 eqtrd z0z/nn×˙M=z×˙M
76 csbfv2g z0z/nUGn=Uz/nGn
77 csbfv z/nGn=Gz
78 77 a1i z0z/nGn=Gz
79 78 fveq2d z0Uz/nGn=UGz
80 76 79 eqtrd z0z/nUGn=UGz
81 75 80 oveq12d z0z/nn×˙MAz/nUGn=z×˙MAUGz
82 71 81 eqtrd z0z/nn×˙MAUGn=z×˙MAUGz
83 82 ad2antlr NFinRCRingMBsbB0sz0Gz=0Yz/nn×˙MAUGn=z×˙MAUGz
84 fveq2 Gz=0YUGz=U0Y
85 19 22 jca NFinRCRingMBNFinRRing
86 85 adantr NFinRCRingMBsNFinRRing
87 eqid 0Y=0Y
88 1 15 3 4 24 87 m2cpminv0 NFinRRingU0Y=0A
89 86 88 syl NFinRCRingMBsU0Y=0A
90 89 ad2antrr NFinRCRingMBsbB0sz0U0Y=0A
91 84 90 sylan9eqr NFinRCRingMBsbB0sz0Gz=0YUGz=0A
92 91 oveq2d NFinRCRingMBsbB0sz0Gz=0Yz×˙MAUGz=z×˙MA0A
93 33 adantr NFinRCRingMBsbB0sz0ARing
94 39 ad3antrrr NFinRCRingMBsbB0sz0mulGrpAMnd
95 simpr NFinRCRingMBsbB0sz0z0
96 42 adantr NFinRCRingMBsbB0sz0MB
97 36 16 94 95 96 mulgnn0cld NFinRCRingMBsbB0sz0z×˙MB
98 93 97 jca NFinRCRingMBsbB0sz0ARingz×˙MB
99 98 adantr NFinRCRingMBsbB0sz0Gz=0YARingz×˙MB
100 2 55 24 ringrz ARingz×˙MBz×˙MA0A=0A
101 99 100 syl NFinRCRingMBsbB0sz0Gz=0Yz×˙MA0A=0A
102 83 92 101 3eqtrd NFinRCRingMBsbB0sz0Gz=0Yz/nn×˙MAUGn=0A
103 102 ex NFinRCRingMBsbB0sz0Gz=0Yz/nn×˙MAUGn=0A
104 103 adantlr NFinRCRingMBsbB0sw0z0Gz=0Yz/nn×˙MAUGn=0A
105 104 imim2d NFinRCRingMBsbB0sw0z0w<zGz=0Yw<zz/nn×˙MAUGn=0A
106 105 ralimdva NFinRCRingMBsbB0sw0z0w<zGz=0Yz0w<zz/nn×˙MAUGn=0A
107 106 reximdva NFinRCRingMBsbB0sw0z0w<zGz=0Yw0z0w<zz/nn×˙MAUGn=0A
108 70 107 syld NFinRCRingMBsbB0sfinSupp0YGw0z0w<zz/nn×˙MAUGn=0A
109 62 108 mpd NFinRCRingMBsbB0sw0z0w<zz/nn×˙MAUGn=0A
110 59 60 109 mptnn0fsupp NFinRCRingMBsbB0sfinSupp0An0n×˙MAUGn
111 2 24 30 32 58 110 gsumcl NFinRCRingMBsbB0sAn0n×˙MAUGnB
112 15 1 2 8 m2cpminvid NFinRRingAn0n×˙MAUGnBUTAn0n×˙MAUGn=An0n×˙MAUGn
113 20 23 111 112 syl3anc NFinRCRingMBsbB0sUTAn0n×˙MAUGn=An0n×˙MAUGn
114 3 4 pmatring NFinRRingYRing
115 19 22 114 syl2anc NFinRCRingMBYRing
116 ringmnd YRingYMnd
117 115 116 syl NFinRCRingMBYMnd
118 117 ad2antrr NFinRCRingMBsbB0sYMnd
119 8 1 2 3 4 12 mat2pmatghm NFinRRingTAGrpHomY
120 20 23 119 syl2anc NFinRCRingMBsbB0sTAGrpHomY
121 ghmmhm TAGrpHomYTAMndHomY
122 120 121 syl NFinRCRingMBsbB0sTAMndHomY
123 37 ad3antrrr NFinRCRingMBsbB0sn0ARing
124 21 46 sylan2 NFinRCRingU:NConstPolyMatRB
125 124 3adant3 NFinRCRingMBU:NConstPolyMatRB
126 125 ad3antrrr NFinRCRingMBsbB0sn0U:NConstPolyMatRB
127 126 53 ffvelcdmd NFinRCRingMBsbB0sn0UGnB
128 123 44 127 56 syl3anc NFinRCRingMBsbB0sn0n×˙MAUGnB
129 2 24 30 118 32 122 128 110 gsummptmhm NFinRCRingMBsbB0sYn0Tn×˙MAUGn=TAn0n×˙MAUGn
130 8 1 2 3 4 12 mat2pmatrhm NFinRCRingTARingHomY
131 130 3adant3 NFinRCRingMBTARingHomY
132 131 ad3antrrr NFinRCRingMBsbB0sn0TARingHomY
133 2 55 5 rhmmul TARingHomYn×˙MBUGnBTn×˙MAUGn=Tn×˙M×˙TUGn
134 132 44 127 133 syl3anc NFinRCRingMBsbB0sn0Tn×˙MAUGn=Tn×˙M×˙TUGn
135 8 1 2 3 4 12 mat2pmatmhm NFinRCRingTmulGrpAMndHommulGrpY
136 135 3adant3 NFinRCRingMBTmulGrpAMndHommulGrpY
137 136 ad3antrrr NFinRCRingMBsbB0sn0TmulGrpAMndHommulGrpY
138 36 16 17 mhmmulg TmulGrpAMndHommulGrpYn0MBTn×˙M=nETM
139 137 41 43 138 syl3anc NFinRCRingMBsbB0sn0Tn×˙M=nETM
140 19 ad3antrrr NFinRCRingMBsbB0sn0NFin
141 22 ad3antrrr NFinRCRingMBsbB0sn0RRing
142 45 15 8 m2cpminvid2 NFinRRingGnNConstPolyMatRTUGn=Gn
143 140 141 53 142 syl3anc NFinRCRingMBsbB0sn0TUGn=Gn
144 139 143 oveq12d NFinRCRingMBsbB0sn0Tn×˙M×˙TUGn=nETM×˙Gn
145 134 144 eqtrd NFinRCRingMBsbB0sn0Tn×˙MAUGn=nETM×˙Gn
146 145 mpteq2dva NFinRCRingMBsbB0sn0Tn×˙MAUGn=n0nETM×˙Gn
147 146 oveq2d NFinRCRingMBsbB0sYn0Tn×˙MAUGn=Yn0nETM×˙Gn
148 129 147 eqtr3d NFinRCRingMBsbB0sTAn0n×˙MAUGn=Yn0nETM×˙Gn
149 148 fveq2d NFinRCRingMBsbB0sUTAn0n×˙MAUGn=UYn0nETM×˙Gn
150 113 149 eqtr3d NFinRCRingMBsbB0sAn0n×˙MAUGn=UYn0nETM×˙Gn
151 18 150 sylan9eqr NFinRCRingMBsbB0sAn0coe1Kn˙n×˙M=An0n×˙MAUGnAn0coe1Kn˙n×˙M=UYn0nETM×˙Gn
152 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 55 cayhamlem3 NFinRCRingMBsbB0sAn0coe1Kn˙n×˙M=An0n×˙MAUGn
153 151 152 reximddv2 NFinRCRingMBsbB0sAn0coe1Kn˙n×˙M=UYn0nETM×˙Gn