Metamath Proof Explorer


Theorem chfacfscmul0

Description: A scaled value of the "characteristic factor function" is zero almost always. (Contributed by AV, 9-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A=NMatR
chfacfisf.b B=BaseA
chfacfisf.p P=Poly1R
chfacfisf.y Y=NMatP
chfacfisf.r ×˙=Y
chfacfisf.s -˙=-Y
chfacfisf.0 0˙=0Y
chfacfisf.t T=NmatToPolyMatR
chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
chfacfscmulcl.x X=var1R
chfacfscmulcl.m ·˙=Y
chfacfscmulcl.e ×˙=mulGrpP
Assertion chfacfscmul0 NFinRCRingMBsbB0sKs+2K×˙X·˙GK=0˙

Proof

Step Hyp Ref Expression
1 chfacfisf.a A=NMatR
2 chfacfisf.b B=BaseA
3 chfacfisf.p P=Poly1R
4 chfacfisf.y Y=NMatP
5 chfacfisf.r ×˙=Y
6 chfacfisf.s -˙=-Y
7 chfacfisf.0 0˙=0Y
8 chfacfisf.t T=NmatToPolyMatR
9 chfacfisf.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
10 chfacfscmulcl.x X=var1R
11 chfacfscmulcl.m ·˙=Y
12 chfacfscmulcl.e ×˙=mulGrpP
13 eluz2 Ks+2s+2Ks+2K
14 simpll Kss+2KK
15 nngt0 s0<s
16 nnre ss
17 16 adantl Kss
18 2rp 2+
19 18 a1i Ks2+
20 17 19 ltaddrpd Kss<s+2
21 0red Ks0
22 2re 2
23 22 a1i Ks2
24 17 23 readdcld Kss+2
25 lttr 0ss+20<ss<s+20<s+2
26 21 17 24 25 syl3anc Ks0<ss<s+20<s+2
27 20 26 mpan2d Ks0<s0<s+2
28 27 ex Ks0<s0<s+2
29 28 com13 0<ssK0<s+2
30 15 29 mpcom sK0<s+2
31 30 impcom Ks0<s+2
32 zre KK
33 32 adantr KsK
34 ltleletr 0s+2K0<s+2s+2K0K
35 21 24 33 34 syl3anc Ks0<s+2s+2K0K
36 31 35 mpand Kss+2K0K
37 36 imp Kss+2K0K
38 elnn0z K0K0K
39 14 37 38 sylanbrc Kss+2KK0
40 nncn ss
41 add1p1 ss+1+1=s+2
42 40 41 syl ss+1+1=s+2
43 42 adantl Kss+1+1=s+2
44 43 eqcomd Kss+2=s+1+1
45 44 breq1d Kss+2Ks+1+1K
46 nnz ss
47 46 peano2zd ss+1
48 47 anim2i KsKs+1
49 48 ancomd Kss+1K
50 zltp1le s+1Ks+1<Ks+1+1K
51 50 bicomd s+1Ks+1+1Ks+1<K
52 49 51 syl Kss+1+1Ks+1<K
53 45 52 bitrd Kss+2Ks+1<K
54 53 biimpa Kss+2Ks+1<K
55 39 54 jca Kss+2KK0s+1<K
56 55 ex Kss+2KK0s+1<K
57 56 impancom Ks+2KsK0s+1<K
58 57 3adant1 s+2Ks+2KsK0s+1<K
59 58 com12 ss+2Ks+2KK0s+1<K
60 13 59 biimtrid sKs+2K0s+1<K
61 60 adantr sbB0sKs+2K0s+1<K
62 61 adantl NFinRCRingMBsbB0sKs+2K0s+1<K
63 0red NFinRCRingMBsbB0sK0s+1<K0
64 peano2re ss+1
65 16 64 syl ss+1
66 65 adantr sbB0ss+1
67 66 adantl NFinRCRingMBsbB0ss+1
68 67 ad2antrr NFinRCRingMBsbB0sK0s+1<Ks+1
69 nn0re K0K
70 69 ad2antlr NFinRCRingMBsbB0sK0s+1<KK
71 nnnn0 ss0
72 71 adantr sbB0ss0
73 72 ad2antlr NFinRCRingMBsbB0sK0s0
74 nn0p1gt0 s00<s+1
75 73 74 syl NFinRCRingMBsbB0sK00<s+1
76 75 adantr NFinRCRingMBsbB0sK0s+1<K0<s+1
77 simpr NFinRCRingMBsbB0sK0s+1<Ks+1<K
78 63 68 70 76 77 lttrd NFinRCRingMBsbB0sK0s+1<K0<K
79 78 gt0ne0d NFinRCRingMBsbB0sK0s+1<KK0
80 79 neneqd NFinRCRingMBsbB0sK0s+1<K¬K=0
81 80 adantr NFinRCRingMBsbB0sK0s+1<Kn=K¬K=0
82 eqeq1 n=Kn=0K=0
83 82 notbid n=K¬n=0¬K=0
84 83 adantl NFinRCRingMBsbB0sK0s+1<Kn=K¬n=0¬K=0
85 81 84 mpbird NFinRCRingMBsbB0sK0s+1<Kn=K¬n=0
86 85 iffalsed NFinRCRingMBsbB0sK0s+1<Kn=Kifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
87 66 ad2antlr NFinRCRingMBsbB0sK0s+1
88 ltne s+1s+1<KKs+1
89 87 88 sylan NFinRCRingMBsbB0sK0s+1<KKs+1
90 89 neneqd NFinRCRingMBsbB0sK0s+1<K¬K=s+1
91 90 adantr NFinRCRingMBsbB0sK0s+1<Kn=K¬K=s+1
92 eqeq1 n=Kn=s+1K=s+1
93 92 notbid n=K¬n=s+1¬K=s+1
94 93 adantl NFinRCRingMBsbB0sK0s+1<Kn=K¬n=s+1¬K=s+1
95 91 94 mpbird NFinRCRingMBsbB0sK0s+1<Kn=K¬n=s+1
96 95 iffalsed NFinRCRingMBsbB0sK0s+1<Kn=Kifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=ifs+1<n0˙Tbn1-˙TM×˙Tbn
97 simplr NFinRCRingMBsbB0sK0s+1<Kn=Ks+1<K
98 breq2 n=Ks+1<ns+1<K
99 98 adantl NFinRCRingMBsbB0sK0s+1<Kn=Ks+1<ns+1<K
100 97 99 mpbird NFinRCRingMBsbB0sK0s+1<Kn=Ks+1<n
101 100 iftrued NFinRCRingMBsbB0sK0s+1<Kn=Kifs+1<n0˙Tbn1-˙TM×˙Tbn=0˙
102 86 96 101 3eqtrd NFinRCRingMBsbB0sK0s+1<Kn=Kifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn=0˙
103 simplr NFinRCRingMBsbB0sK0s+1<KK0
104 7 fvexi 0˙V
105 104 a1i NFinRCRingMBsbB0sK0s+1<K0˙V
106 9 102 103 105 fvmptd2 NFinRCRingMBsbB0sK0s+1<KGK=0˙
107 106 oveq2d NFinRCRingMBsbB0sK0s+1<KK×˙X·˙GK=K×˙X·˙0˙
108 crngring RCRingRRing
109 3 4 pmatlmod NFinRRingYLMod
110 108 109 sylan2 NFinRCRingYLMod
111 110 3adant3 NFinRCRingMBYLMod
112 111 ad2antrr NFinRCRingMBsbB0sK0YLMod
113 eqid mulGrpP=mulGrpP
114 eqid BaseP=BaseP
115 113 114 mgpbas BaseP=BasemulGrpP
116 3 ply1ring RRingPRing
117 108 116 syl RCRingPRing
118 117 3ad2ant2 NFinRCRingMBPRing
119 113 ringmgp PRingmulGrpPMnd
120 118 119 syl NFinRCRingMBmulGrpPMnd
121 120 ad2antrr NFinRCRingMBsbB0sK0mulGrpPMnd
122 simpr NFinRCRingMBsbB0sK0K0
123 108 3ad2ant2 NFinRCRingMBRRing
124 10 3 114 vr1cl RRingXBaseP
125 123 124 syl NFinRCRingMBXBaseP
126 125 ad2antrr NFinRCRingMBsbB0sK0XBaseP
127 115 12 121 122 126 mulgnn0cld NFinRCRingMBsbB0sK0K×˙XBaseP
128 3 ply1crng RCRingPCRing
129 128 anim2i NFinRCRingNFinPCRing
130 129 3adant3 NFinRCRingMBNFinPCRing
131 4 matsca2 NFinPCRingP=ScalarY
132 130 131 syl NFinRCRingMBP=ScalarY
133 132 eqcomd NFinRCRingMBScalarY=P
134 133 fveq2d NFinRCRingMBBaseScalarY=BaseP
135 134 eleq2d NFinRCRingMBK×˙XBaseScalarYK×˙XBaseP
136 135 ad2antrr NFinRCRingMBsbB0sK0K×˙XBaseScalarYK×˙XBaseP
137 127 136 mpbird NFinRCRingMBsbB0sK0K×˙XBaseScalarY
138 112 137 jca NFinRCRingMBsbB0sK0YLModK×˙XBaseScalarY
139 138 adantr NFinRCRingMBsbB0sK0s+1<KYLModK×˙XBaseScalarY
140 eqid ScalarY=ScalarY
141 eqid BaseScalarY=BaseScalarY
142 140 11 141 7 lmodvs0 YLModK×˙XBaseScalarYK×˙X·˙0˙=0˙
143 139 142 syl NFinRCRingMBsbB0sK0s+1<KK×˙X·˙0˙=0˙
144 107 143 eqtrd NFinRCRingMBsbB0sK0s+1<KK×˙X·˙GK=0˙
145 144 expl NFinRCRingMBsbB0sK0s+1<KK×˙X·˙GK=0˙
146 62 145 syld NFinRCRingMBsbB0sKs+2K×˙X·˙GK=0˙
147 146 3impia NFinRCRingMBsbB0sKs+2K×˙X·˙GK=0˙