Metamath Proof Explorer


Theorem crctcshwlkn0lem5

Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)

Ref Expression
Hypotheses crctcshwlkn0lem.s φS1..^N
crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
crctcshwlkn0lem.h H=FcyclShiftS
crctcshwlkn0lem.n N=F
crctcshwlkn0lem.f φFWordA
crctcshwlkn0lem.p φi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFi
Assertion crctcshwlkn0lem5 φjN-S+1..^Nif-Qj=Qj+1IHj=QjQjQj+1IHj

Proof

Step Hyp Ref Expression
1 crctcshwlkn0lem.s φS1..^N
2 crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
3 crctcshwlkn0lem.h H=FcyclShiftS
4 crctcshwlkn0lem.n N=F
5 crctcshwlkn0lem.f φFWordA
6 crctcshwlkn0lem.p φi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFi
7 elfzoelz jN-S+1..^Nj
8 7 zcnd jN-S+1..^Nj
9 8 adantl S1..^NjN-S+1..^Nj
10 1cnd S1..^NjN-S+1..^N1
11 elfzoelz S1..^NS
12 11 zcnd S1..^NS
13 12 adantr S1..^NjN-S+1..^NS
14 elfzoel2 S1..^NN
15 14 zcnd S1..^NN
16 15 adantr S1..^NjN-S+1..^NN
17 9 10 13 16 2addsubd S1..^NjN-S+1..^Nj+1+S-N=j+S-N+1
18 17 eqcomd S1..^NjN-S+1..^Nj+S-N+1=j+1+S-N
19 elfzo1 S1..^NSNS<N
20 nnz NN
21 20 3ad2ant2 SNS<NN
22 21 adantr SNS<NjN-S+1..^NN
23 7 adantl SNS<NjN-S+1..^Nj
24 nnz SS
25 24 3ad2ant1 SNS<NS
26 25 adantr SNS<NjN-S+1..^NS
27 23 26 zaddcld SNS<NjN-S+1..^Nj+S
28 elfzo2 jN-S+1..^NjN-S+1Nj<N
29 eluz2 jN-S+1N-S+1jN-S+1j
30 zre jj
31 nnre SS
32 nnre NN
33 31 32 anim12i SNSN
34 simplr SNjN
35 simpll SNjS
36 34 35 resubcld SNjNS
37 36 lep1d SNjNSN-S+1
38 1red SNj1
39 36 38 readdcld SNjN-S+1
40 simpr SNjj
41 letr NSN-S+1jNSN-S+1N-S+1jNSj
42 36 39 40 41 syl3anc SNjNSN-S+1N-S+1jNSj
43 37 42 mpand SNjN-S+1jNSj
44 34 35 40 lesubaddd SNjNSjNj+S
45 43 44 sylibd SNjN-S+1jNj+S
46 45 ex SNjN-S+1jNj+S
47 33 46 syl SNjN-S+1jNj+S
48 47 3adant3 SNS<NjN-S+1jNj+S
49 30 48 syl5com jSNS<NN-S+1jNj+S
50 49 com23 jN-S+1jSNS<NNj+S
51 50 imp jN-S+1jSNS<NNj+S
52 51 3adant1 N-S+1jN-S+1jSNS<NNj+S
53 29 52 sylbi jN-S+1SNS<NNj+S
54 53 3ad2ant1 jN-S+1Nj<NSNS<NNj+S
55 54 com12 SNS<NjN-S+1Nj<NNj+S
56 28 55 biimtrid SNS<NjN-S+1..^NNj+S
57 56 imp SNS<NjN-S+1..^NNj+S
58 eluz2 j+SNNj+SNj+S
59 22 27 57 58 syl3anbrc SNS<NjN-S+1..^Nj+SN
60 uznn0sub j+SNj+S-N0
61 59 60 syl SNS<NjN-S+1..^Nj+S-N0
62 simpl2 SNS<NjN-S+1..^NN
63 30 adantl SNjj
64 simpll SNjS
65 ax-1 NSN
66 65 imdistanri SNNN
67 66 adantr SNjNN
68 lt2add jSNNj<NS<Nj+S<N+N
69 63 64 67 68 syl21anc SNjj<NS<Nj+S<N+N
70 63 64 readdcld SNjj+S
71 simplr SNjN
72 70 71 71 ltsubaddd SNjj+S-N<Nj+S<N+N
73 69 72 sylibrd SNjj<NS<Nj+S-N<N
74 73 ex SNjj<NS<Nj+S-N<N
75 74 com23 SNj<NS<Njj+S-N<N
76 75 expcomd SNS<Nj<Njj+S-N<N
77 33 76 syl SNS<Nj<Njj+S-N<N
78 77 3impia SNS<Nj<Njj+S-N<N
79 78 com13 jj<NSNS<Nj+S-N<N
80 79 3ad2ant2 N-S+1jN-S+1jj<NSNS<Nj+S-N<N
81 29 80 sylbi jN-S+1j<NSNS<Nj+S-N<N
82 81 imp jN-S+1j<NSNS<Nj+S-N<N
83 82 3adant2 jN-S+1Nj<NSNS<Nj+S-N<N
84 28 83 sylbi jN-S+1..^NSNS<Nj+S-N<N
85 84 impcom SNS<NjN-S+1..^Nj+S-N<N
86 61 62 85 3jca SNS<NjN-S+1..^Nj+S-N0Nj+S-N<N
87 19 86 sylanb S1..^NjN-S+1..^Nj+S-N0Nj+S-N<N
88 elfzo0 j+S-N0..^Nj+S-N0Nj+S-N<N
89 87 88 sylibr S1..^NjN-S+1..^Nj+S-N0..^N
90 89 adantr S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Nj+S-N0..^N
91 fveq2 i=j+S-NPi=Pj+S-N
92 91 adantl S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-NPi=Pj+S-N
93 fvoveq1 i=j+S-NPi+1=Pj+S-N+1
94 simpr S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Nj+S-N+1=j+1+S-N
95 94 fveq2d S1..^NjN-S+1..^Nj+S-N+1=j+1+S-NPj+S-N+1=Pj+1+S-N
96 93 95 sylan9eqr S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-NPi+1=Pj+1+S-N
97 92 96 eqeq12d S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-NPi=Pi+1Pj+S-N=Pj+1+S-N
98 2fveq3 i=j+S-NIFi=IFj+S-N
99 91 sneqd i=j+S-NPi=Pj+S-N
100 98 99 eqeq12d i=j+S-NIFi=PiIFj+S-N=Pj+S-N
101 100 adantl S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-NIFi=PiIFj+S-N=Pj+S-N
102 92 96 preq12d S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-NPiPi+1=Pj+S-NPj+1+S-N
103 simpr S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-Ni=j+S-N
104 103 fveq2d S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-NFi=Fj+S-N
105 104 fveq2d S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-NIFi=IFj+S-N
106 102 105 sseq12d S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-NPiPi+1IFiPj+S-NPj+1+S-NIFj+S-N
107 97 101 106 ifpbi123d S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni=j+S-Nif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S-N=Pj+1+S-NIFj+S-N=Pj+S-NPj+S-NPj+1+S-NIFj+S-N
108 90 107 rspcdv S1..^NjN-S+1..^Nj+S-N+1=j+1+S-Ni0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S-N=Pj+1+S-NIFj+S-N=Pj+S-NPj+S-NPj+1+S-NIFj+S-N
109 18 108 mpdan S1..^NjN-S+1..^Ni0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S-N=Pj+1+S-NIFj+S-N=Pj+S-NPj+S-NPj+1+S-NIFj+S-N
110 1 109 sylan φjN-S+1..^Ni0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S-N=Pj+1+S-NIFj+S-N=Pj+S-NPj+S-NPj+1+S-NIFj+S-N
111 110 ex φjN-S+1..^Ni0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S-N=Pj+1+S-NIFj+S-N=Pj+S-NPj+S-NPj+1+S-NIFj+S-N
112 6 111 mpid φjN-S+1..^Nif-Pj+S-N=Pj+1+S-NIFj+S-N=Pj+S-NPj+S-NPj+1+S-NIFj+S-N
113 112 imp φjN-S+1..^Nif-Pj+S-N=Pj+1+S-NIFj+S-N=Pj+S-NPj+S-NPj+1+S-NIFj+S-N
114 elfzofz jN-S+1..^NjN-S+1N
115 1 2 crctcshwlkn0lem3 φjN-S+1NQj=Pj+S-N
116 114 115 sylan2 φjN-S+1..^NQj=Pj+S-N
117 fzofzp1 jN-S+1..^Nj+1N-S+1N
118 1 2 crctcshwlkn0lem3 φj+1N-S+1NQj+1=Pj+1+S-N
119 117 118 sylan2 φjN-S+1..^NQj+1=Pj+1+S-N
120 3 fveq1i Hj=FcyclShiftSj
121 5 adantr φjN-S+1..^NFWordA
122 1 11 syl φS
123 122 adantr φjN-S+1..^NS
124 ltle SNS<NSN
125 33 124 syl SNS<NSN
126 125 3impia SNS<NSN
127 nnnn0 SS0
128 nnnn0 NN0
129 127 128 anim12i SNS0N0
130 129 3adant3 SNS<NS0N0
131 nn0sub S0N0SNNS0
132 130 131 syl SNS<NSNNS0
133 126 132 mpbid SNS<NNS0
134 19 133 sylbi S1..^NNS0
135 1nn0 10
136 135 a1i S1..^N10
137 134 136 nn0addcld S1..^NN-S+10
138 elnn0uz N-S+10N-S+10
139 137 138 sylib S1..^NN-S+10
140 fzoss1 N-S+10N-S+1..^N0..^N
141 1 139 140 3syl φN-S+1..^N0..^N
142 141 sselda φjN-S+1..^Nj0..^N
143 4 oveq2i 0..^N=0..^F
144 142 143 eleqtrdi φjN-S+1..^Nj0..^F
145 cshwidxmod FWordASj0..^FFcyclShiftSj=Fj+SmodF
146 121 123 144 145 syl3anc φjN-S+1..^NFcyclShiftSj=Fj+SmodF
147 4 eqcomi F=N
148 147 oveq2i j+SmodF=j+SmodN
149 eluzelre jN-S+1j
150 149 3ad2ant1 jN-S+1Nj<Nj
151 150 adantl SNS<NjN-S+1Nj<Nj
152 31 3ad2ant1 SNS<NS
153 152 adantr SNS<NjN-S+1Nj<NS
154 151 153 readdcld SNS<NjN-S+1Nj<Nj+S
155 nnrp NN+
156 155 3ad2ant2 SNS<NN+
157 156 adantr SNS<NjN-S+1Nj<NN+
158 54 impcom SNS<NjN-S+1Nj<NNj+S
159 157 rpred SNS<NjN-S+1Nj<NN
160 simpr3 SNS<NjN-S+1Nj<Nj<N
161 simpl3 SNS<NjN-S+1Nj<NS<N
162 151 153 159 160 161 lt2addmuld SNS<NjN-S+1Nj<Nj+S<2 N
163 158 162 jca SNS<NjN-S+1Nj<NNj+Sj+S<2 N
164 154 157 163 jca31 SNS<NjN-S+1Nj<Nj+SN+Nj+Sj+S<2 N
165 164 ex SNS<NjN-S+1Nj<Nj+SN+Nj+Sj+S<2 N
166 28 165 biimtrid SNS<NjN-S+1..^Nj+SN+Nj+Sj+S<2 N
167 19 166 sylbi S1..^NjN-S+1..^Nj+SN+Nj+Sj+S<2 N
168 1 167 syl φjN-S+1..^Nj+SN+Nj+Sj+S<2 N
169 168 imp φjN-S+1..^Nj+SN+Nj+Sj+S<2 N
170 2submod j+SN+Nj+Sj+S<2 Nj+SmodN=j+S-N
171 169 170 syl φjN-S+1..^Nj+SmodN=j+S-N
172 148 171 eqtrid φjN-S+1..^Nj+SmodF=j+S-N
173 172 fveq2d φjN-S+1..^NFj+SmodF=Fj+S-N
174 146 173 eqtrd φjN-S+1..^NFcyclShiftSj=Fj+S-N
175 120 174 eqtrid φjN-S+1..^NHj=Fj+S-N
176 175 fveq2d φjN-S+1..^NIHj=IFj+S-N
177 simp1 Qj=Pj+S-NQj+1=Pj+1+S-NIHj=IFj+S-NQj=Pj+S-N
178 simp2 Qj=Pj+S-NQj+1=Pj+1+S-NIHj=IFj+S-NQj+1=Pj+1+S-N
179 177 178 eqeq12d Qj=Pj+S-NQj+1=Pj+1+S-NIHj=IFj+S-NQj=Qj+1Pj+S-N=Pj+1+S-N
180 simp3 Qj=Pj+S-NQj+1=Pj+1+S-NIHj=IFj+S-NIHj=IFj+S-N
181 177 sneqd Qj=Pj+S-NQj+1=Pj+1+S-NIHj=IFj+S-NQj=Pj+S-N
182 180 181 eqeq12d Qj=Pj+S-NQj+1=Pj+1+S-NIHj=IFj+S-NIHj=QjIFj+S-N=Pj+S-N
183 177 178 preq12d Qj=Pj+S-NQj+1=Pj+1+S-NIHj=IFj+S-NQjQj+1=Pj+S-NPj+1+S-N
184 183 180 sseq12d Qj=Pj+S-NQj+1=Pj+1+S-NIHj=IFj+S-NQjQj+1IHjPj+S-NPj+1+S-NIFj+S-N
185 179 182 184 ifpbi123d Qj=Pj+S-NQj+1=Pj+1+S-NIHj=IFj+S-Nif-Qj=Qj+1IHj=QjQjQj+1IHjif-Pj+S-N=Pj+1+S-NIFj+S-N=Pj+S-NPj+S-NPj+1+S-NIFj+S-N
186 116 119 176 185 syl3anc φjN-S+1..^Nif-Qj=Qj+1IHj=QjQjQj+1IHjif-Pj+S-N=Pj+1+S-NIFj+S-N=Pj+S-NPj+S-NPj+1+S-NIFj+S-N
187 113 186 mpbird φjN-S+1..^Nif-Qj=Qj+1IHj=QjQjQj+1IHj
188 187 ralrimiva φjN-S+1..^Nif-Qj=Qj+1IHj=QjQjQj+1IHj