Metamath Proof Explorer


Theorem cvmliftmolem1

Description: Lemma for cvmliftmo . (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses cvmliftmo.b B=C
cvmliftmo.y Y=K
cvmliftmo.f φFCCovMapJ
cvmliftmo.k φKConn
cvmliftmo.l φKN-Locally Conn
cvmliftmo.o φOY
cvmliftmoi.m φMKCnC
cvmliftmoi.n φNKCnC
cvmliftmoi.g φFM=FN
cvmliftmoi.p φMO=NO
cvmliftmolem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftmolem.2 φψTSU
cvmliftmolem.3 φψWT
cvmliftmolem.4 φψIM-1W
cvmliftmolem.5 φψK𝑡IConn
cvmliftmolem.6 φψXI
cvmliftmolem.7 φψQI
cvmliftmolem.8 φψRI
cvmliftmolem.9 φψFMXU
Assertion cvmliftmolem1 φψQdomMNRdomMN

Proof

Step Hyp Ref Expression
1 cvmliftmo.b B=C
2 cvmliftmo.y Y=K
3 cvmliftmo.f φFCCovMapJ
4 cvmliftmo.k φKConn
5 cvmliftmo.l φKN-Locally Conn
6 cvmliftmo.o φOY
7 cvmliftmoi.m φMKCnC
8 cvmliftmoi.n φNKCnC
9 cvmliftmoi.g φFM=FN
10 cvmliftmoi.p φMO=NO
11 cvmliftmolem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
12 cvmliftmolem.2 φψTSU
13 cvmliftmolem.3 φψWT
14 cvmliftmolem.4 φψIM-1W
15 cvmliftmolem.5 φψK𝑡IConn
16 cvmliftmolem.6 φψXI
17 cvmliftmolem.7 φψQI
18 cvmliftmolem.8 φψRI
19 cvmliftmolem.9 φψFMXU
20 9 adantr φψFM=FN
21 20 fveq1d φψFMR=FNR
22 14 18 sseldd φψRM-1W
23 2 1 cnf MKCnCM:YB
24 7 23 syl φM:YB
25 24 ffnd φMFnY
26 elpreima MFnYRM-1WRYMRW
27 25 26 syl φRM-1WRYMRW
28 27 simprbda φRM-1WRY
29 22 28 syldan φψRY
30 fvco3 M:YBRYFMR=FMR
31 24 30 sylan φRYFMR=FMR
32 29 31 syldan φψFMR=FMR
33 2 1 cnf NKCnCN:YB
34 8 33 syl φN:YB
35 fvco3 N:YBRYFNR=FNR
36 34 35 sylan φRYFNR=FNR
37 29 36 syldan φψFNR=FNR
38 21 32 37 3eqtr3d φψFMR=FNR
39 38 adantr φψMQ=NQFMR=FNR
40 27 simplbda φRM-1WMRW
41 22 40 syldan φψMRW
42 41 adantr φψMQ=NQMRW
43 fvres MRWFWMR=FMR
44 42 43 syl φψMQ=NQFWMR=FMR
45 18 adantr φψMQ=NQRI
46 fvres RINIR=NR
47 45 46 syl φψMQ=NQNIR=NR
48 eqid K𝑡I=K𝑡I
49 15 adantr φψMQ=NQK𝑡IConn
50 8 adantr φψNKCnC
51 cnvimass M-1WdomM
52 51 24 fssdm φM-1WY
53 52 adantr φψM-1WY
54 14 53 sstrd φψIY
55 2 cnrest NKCnCIYNIK𝑡ICnC
56 50 54 55 syl2anc φψNIK𝑡ICnC
57 3 adantr φψFCCovMapJ
58 cvmtop1 FCCovMapJCTop
59 57 58 syl φψCTop
60 1 toptopon CTopCTopOnB
61 59 60 sylib φψCTopOnB
62 df-ima NI=ranNI
63 elssuni WTWT
64 13 63 syl φψWT
65 11 cvmsuni TSUT=F-1U
66 12 65 syl φψT=F-1U
67 64 66 sseqtrd φψWF-1U
68 imass2 WF-1UM-1WM-1F-1U
69 67 68 syl φψM-1WM-1F-1U
70 14 69 sstrd φψIM-1F-1U
71 20 cnveqd φψFM-1=FN-1
72 cnvco FM-1=M-1F-1
73 cnvco FN-1=N-1F-1
74 71 72 73 3eqtr3g φψM-1F-1=N-1F-1
75 74 imaeq1d φψM-1F-1U=N-1F-1U
76 imaco M-1F-1U=M-1F-1U
77 imaco N-1F-1U=N-1F-1U
78 75 76 77 3eqtr3g φψM-1F-1U=N-1F-1U
79 70 78 sseqtrd φψIN-1F-1U
80 34 adantr φψN:YB
81 80 ffund φψFunN
82 80 fdmd φψdomN=Y
83 54 82 sseqtrrd φψIdomN
84 funimass3 FunNIdomNNIF-1UIN-1F-1U
85 81 83 84 syl2anc φψNIF-1UIN-1F-1U
86 79 85 mpbird φψNIF-1U
87 62 86 eqsstrrid φψranNIF-1U
88 cnvimass F-1UdomF
89 cvmcn FCCovMapJFCCnJ
90 3 89 syl φFCCnJ
91 eqid J=J
92 1 91 cnf FCCnJF:BJ
93 90 92 syl φF:BJ
94 93 fdmd φdomF=B
95 94 adantr φψdomF=B
96 88 95 sseqtrid φψF-1UB
97 cnrest2 CTopOnBranNIF-1UF-1UBNIK𝑡ICnCNIK𝑡ICnC𝑡F-1U
98 61 87 96 97 syl3anc φψNIK𝑡ICnCNIK𝑡ICnC𝑡F-1U
99 56 98 mpbid φψNIK𝑡ICnC𝑡F-1U
100 99 adantr φψMQ=NQNIK𝑡ICnC𝑡F-1U
101 df-ss WF-1UWF-1U=W
102 67 101 sylib φψWF-1U=W
103 1 topopn CTopBC
104 59 103 syl φψBC
105 104 96 ssexd φψF-1UV
106 11 cvmsss TSUTC
107 12 106 syl φψTC
108 107 13 sseldd φψWC
109 elrestr CTopF-1UVWCWF-1UC𝑡F-1U
110 59 105 108 109 syl3anc φψWF-1UC𝑡F-1U
111 102 110 eqeltrrd φψWC𝑡F-1U
112 111 adantr φψMQ=NQWC𝑡F-1U
113 11 cvmscld FCCovMapJTSUWTWClsdC𝑡F-1U
114 57 12 13 113 syl3anc φψWClsdC𝑡F-1U
115 114 adantr φψMQ=NQWClsdC𝑡F-1U
116 conntop KConnKTop
117 4 116 syl φKTop
118 117 adantr φψKTop
119 2 restuni KTopIYI=K𝑡I
120 118 54 119 syl2anc φψI=K𝑡I
121 17 120 eleqtrd φψQK𝑡I
122 121 adantr φψMQ=NQQK𝑡I
123 17 adantr φψMQ=NQQI
124 fvres QINIQ=NQ
125 123 124 syl φψMQ=NQNIQ=NQ
126 simpr φψMQ=NQMQ=NQ
127 14 17 sseldd φψQM-1W
128 elpreima MFnYQM-1WQYMQW
129 25 128 syl φQM-1WQYMQW
130 129 simplbda φQM-1WMQW
131 127 130 syldan φψMQW
132 131 adantr φψMQ=NQMQW
133 126 132 eqeltrrd φψMQ=NQNQW
134 125 133 eqeltrd φψMQ=NQNIQW
135 48 49 100 112 115 122 134 conncn φψMQ=NQNI:K𝑡IW
136 120 adantr φψMQ=NQI=K𝑡I
137 136 feq2d φψMQ=NQNI:IWNI:K𝑡IW
138 135 137 mpbird φψMQ=NQNI:IW
139 138 45 ffvelcdmd φψMQ=NQNIRW
140 47 139 eqeltrrd φψMQ=NQNRW
141 fvres NRWFWNR=FNR
142 140 141 syl φψMQ=NQFWNR=FNR
143 39 44 142 3eqtr4d φψMQ=NQFWMR=FWNR
144 11 cvmsf1o FCCovMapJTSUWTFW:W1-1 ontoU
145 57 12 13 144 syl3anc φψFW:W1-1 ontoU
146 f1of1 FW:W1-1 ontoUFW:W1-1U
147 145 146 syl φψFW:W1-1U
148 147 adantr φψMQ=NQFW:W1-1U
149 f1fveq FW:W1-1UMRWNRWFWMR=FWNRMR=NR
150 148 42 140 149 syl12anc φψMQ=NQFWMR=FWNRMR=NR
151 143 150 mpbid φψMQ=NQMR=NR
152 151 ex φψMQ=NQMR=NR
153 129 simprbda φQM-1WQY
154 127 153 syldan φψQY
155 fveq2 x=QMx=MQ
156 fveq2 x=QNx=NQ
157 155 156 eqeq12d x=QMx=NxMQ=NQ
158 157 elrab3 QYQxY|Mx=NxMQ=NQ
159 154 158 syl φψQxY|Mx=NxMQ=NQ
160 fveq2 x=RMx=MR
161 fveq2 x=RNx=NR
162 160 161 eqeq12d x=RMx=NxMR=NR
163 162 elrab3 RYRxY|Mx=NxMR=NR
164 29 163 syl φψRxY|Mx=NxMR=NR
165 152 159 164 3imtr4d φψQxY|Mx=NxRxY|Mx=Nx
166 34 ffnd φNFnY
167 fndmin MFnYNFnYdomMN=xY|Mx=Nx
168 25 166 167 syl2anc φdomMN=xY|Mx=Nx
169 168 adantr φψdomMN=xY|Mx=Nx
170 169 eleq2d φψQdomMNQxY|Mx=Nx
171 169 eleq2d φψRdomMNRxY|Mx=Nx
172 165 170 171 3imtr4d φψQdomMNRdomMN