Metamath Proof Explorer


Theorem cvmliftmolem1

Description: Lemma for cvmliftmo . (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses cvmliftmo.b B = C
cvmliftmo.y Y = K
cvmliftmo.f φ F C CovMap J
cvmliftmo.k φ K Conn
cvmliftmo.l φ K N-Locally Conn
cvmliftmo.o φ O Y
cvmliftmoi.m φ M K Cn C
cvmliftmoi.n φ N K Cn C
cvmliftmoi.g φ F M = F N
cvmliftmoi.p φ M O = N O
cvmliftmolem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftmolem.2 φ ψ T S U
cvmliftmolem.3 φ ψ W T
cvmliftmolem.4 φ ψ I M -1 W
cvmliftmolem.5 φ ψ K 𝑡 I Conn
cvmliftmolem.6 φ ψ X I
cvmliftmolem.7 φ ψ Q I
cvmliftmolem.8 φ ψ R I
cvmliftmolem.9 φ ψ F M X U
Assertion cvmliftmolem1 φ ψ Q dom M N R dom M N

Proof

Step Hyp Ref Expression
1 cvmliftmo.b B = C
2 cvmliftmo.y Y = K
3 cvmliftmo.f φ F C CovMap J
4 cvmliftmo.k φ K Conn
5 cvmliftmo.l φ K N-Locally Conn
6 cvmliftmo.o φ O Y
7 cvmliftmoi.m φ M K Cn C
8 cvmliftmoi.n φ N K Cn C
9 cvmliftmoi.g φ F M = F N
10 cvmliftmoi.p φ M O = N O
11 cvmliftmolem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
12 cvmliftmolem.2 φ ψ T S U
13 cvmliftmolem.3 φ ψ W T
14 cvmliftmolem.4 φ ψ I M -1 W
15 cvmliftmolem.5 φ ψ K 𝑡 I Conn
16 cvmliftmolem.6 φ ψ X I
17 cvmliftmolem.7 φ ψ Q I
18 cvmliftmolem.8 φ ψ R I
19 cvmliftmolem.9 φ ψ F M X U
20 9 adantr φ ψ F M = F N
21 20 fveq1d φ ψ F M R = F N R
22 14 18 sseldd φ ψ R M -1 W
23 2 1 cnf M K Cn C M : Y B
24 7 23 syl φ M : Y B
25 24 ffnd φ M Fn Y
26 elpreima M Fn Y R M -1 W R Y M R W
27 25 26 syl φ R M -1 W R Y M R W
28 27 simprbda φ R M -1 W R Y
29 22 28 syldan φ ψ R Y
30 fvco3 M : Y B R Y F M R = F M R
31 24 30 sylan φ R Y F M R = F M R
32 29 31 syldan φ ψ F M R = F M R
33 2 1 cnf N K Cn C N : Y B
34 8 33 syl φ N : Y B
35 fvco3 N : Y B R Y F N R = F N R
36 34 35 sylan φ R Y F N R = F N R
37 29 36 syldan φ ψ F N R = F N R
38 21 32 37 3eqtr3d φ ψ F M R = F N R
39 38 adantr φ ψ M Q = N Q F M R = F N R
40 27 simplbda φ R M -1 W M R W
41 22 40 syldan φ ψ M R W
42 41 adantr φ ψ M Q = N Q M R W
43 fvres M R W F W M R = F M R
44 42 43 syl φ ψ M Q = N Q F W M R = F M R
45 18 adantr φ ψ M Q = N Q R I
46 fvres R I N I R = N R
47 45 46 syl φ ψ M Q = N Q N I R = N R
48 eqid K 𝑡 I = K 𝑡 I
49 15 adantr φ ψ M Q = N Q K 𝑡 I Conn
50 8 adantr φ ψ N K Cn C
51 cnvimass M -1 W dom M
52 51 24 fssdm φ M -1 W Y
53 52 adantr φ ψ M -1 W Y
54 14 53 sstrd φ ψ I Y
55 2 cnrest N K Cn C I Y N I K 𝑡 I Cn C
56 50 54 55 syl2anc φ ψ N I K 𝑡 I Cn C
57 3 adantr φ ψ F C CovMap J
58 cvmtop1 F C CovMap J C Top
59 57 58 syl φ ψ C Top
60 1 toptopon C Top C TopOn B
61 59 60 sylib φ ψ C TopOn B
62 df-ima N I = ran N I
63 elssuni W T W T
64 13 63 syl φ ψ W T
65 11 cvmsuni T S U T = F -1 U
66 12 65 syl φ ψ T = F -1 U
67 64 66 sseqtrd φ ψ W F -1 U
68 imass2 W F -1 U M -1 W M -1 F -1 U
69 67 68 syl φ ψ M -1 W M -1 F -1 U
70 14 69 sstrd φ ψ I M -1 F -1 U
71 20 cnveqd φ ψ F M -1 = F N -1
72 cnvco F M -1 = M -1 F -1
73 cnvco F N -1 = N -1 F -1
74 71 72 73 3eqtr3g φ ψ M -1 F -1 = N -1 F -1
75 74 imaeq1d φ ψ M -1 F -1 U = N -1 F -1 U
76 imaco M -1 F -1 U = M -1 F -1 U
77 imaco N -1 F -1 U = N -1 F -1 U
78 75 76 77 3eqtr3g φ ψ M -1 F -1 U = N -1 F -1 U
79 70 78 sseqtrd φ ψ I N -1 F -1 U
80 34 adantr φ ψ N : Y B
81 80 ffund φ ψ Fun N
82 80 fdmd φ ψ dom N = Y
83 54 82 sseqtrrd φ ψ I dom N
84 funimass3 Fun N I dom N N I F -1 U I N -1 F -1 U
85 81 83 84 syl2anc φ ψ N I F -1 U I N -1 F -1 U
86 79 85 mpbird φ ψ N I F -1 U
87 62 86 eqsstrrid φ ψ ran N I F -1 U
88 cnvimass F -1 U dom F
89 cvmcn F C CovMap J F C Cn J
90 3 89 syl φ F C Cn J
91 eqid J = J
92 1 91 cnf F C Cn J F : B J
93 90 92 syl φ F : B J
94 93 fdmd φ dom F = B
95 94 adantr φ ψ dom F = B
96 88 95 sseqtrid φ ψ F -1 U B
97 cnrest2 C TopOn B ran N I F -1 U F -1 U B N I K 𝑡 I Cn C N I K 𝑡 I Cn C 𝑡 F -1 U
98 61 87 96 97 syl3anc φ ψ N I K 𝑡 I Cn C N I K 𝑡 I Cn C 𝑡 F -1 U
99 56 98 mpbid φ ψ N I K 𝑡 I Cn C 𝑡 F -1 U
100 99 adantr φ ψ M Q = N Q N I K 𝑡 I Cn C 𝑡 F -1 U
101 df-ss W F -1 U W F -1 U = W
102 67 101 sylib φ ψ W F -1 U = W
103 1 topopn C Top B C
104 59 103 syl φ ψ B C
105 104 96 ssexd φ ψ F -1 U V
106 11 cvmsss T S U T C
107 12 106 syl φ ψ T C
108 107 13 sseldd φ ψ W C
109 elrestr C Top F -1 U V W C W F -1 U C 𝑡 F -1 U
110 59 105 108 109 syl3anc φ ψ W F -1 U C 𝑡 F -1 U
111 102 110 eqeltrrd φ ψ W C 𝑡 F -1 U
112 111 adantr φ ψ M Q = N Q W C 𝑡 F -1 U
113 11 cvmscld F C CovMap J T S U W T W Clsd C 𝑡 F -1 U
114 57 12 13 113 syl3anc φ ψ W Clsd C 𝑡 F -1 U
115 114 adantr φ ψ M Q = N Q W Clsd C 𝑡 F -1 U
116 conntop K Conn K Top
117 4 116 syl φ K Top
118 117 adantr φ ψ K Top
119 2 restuni K Top I Y I = K 𝑡 I
120 118 54 119 syl2anc φ ψ I = K 𝑡 I
121 17 120 eleqtrd φ ψ Q K 𝑡 I
122 121 adantr φ ψ M Q = N Q Q K 𝑡 I
123 17 adantr φ ψ M Q = N Q Q I
124 fvres Q I N I Q = N Q
125 123 124 syl φ ψ M Q = N Q N I Q = N Q
126 simpr φ ψ M Q = N Q M Q = N Q
127 14 17 sseldd φ ψ Q M -1 W
128 elpreima M Fn Y Q M -1 W Q Y M Q W
129 25 128 syl φ Q M -1 W Q Y M Q W
130 129 simplbda φ Q M -1 W M Q W
131 127 130 syldan φ ψ M Q W
132 131 adantr φ ψ M Q = N Q M Q W
133 126 132 eqeltrrd φ ψ M Q = N Q N Q W
134 125 133 eqeltrd φ ψ M Q = N Q N I Q W
135 48 49 100 112 115 122 134 conncn φ ψ M Q = N Q N I : K 𝑡 I W
136 120 adantr φ ψ M Q = N Q I = K 𝑡 I
137 136 feq2d φ ψ M Q = N Q N I : I W N I : K 𝑡 I W
138 135 137 mpbird φ ψ M Q = N Q N I : I W
139 138 45 ffvelrnd φ ψ M Q = N Q N I R W
140 47 139 eqeltrrd φ ψ M Q = N Q N R W
141 fvres N R W F W N R = F N R
142 140 141 syl φ ψ M Q = N Q F W N R = F N R
143 39 44 142 3eqtr4d φ ψ M Q = N Q F W M R = F W N R
144 11 cvmsf1o F C CovMap J T S U W T F W : W 1-1 onto U
145 57 12 13 144 syl3anc φ ψ F W : W 1-1 onto U
146 f1of1 F W : W 1-1 onto U F W : W 1-1 U
147 145 146 syl φ ψ F W : W 1-1 U
148 147 adantr φ ψ M Q = N Q F W : W 1-1 U
149 f1fveq F W : W 1-1 U M R W N R W F W M R = F W N R M R = N R
150 148 42 140 149 syl12anc φ ψ M Q = N Q F W M R = F W N R M R = N R
151 143 150 mpbid φ ψ M Q = N Q M R = N R
152 151 ex φ ψ M Q = N Q M R = N R
153 129 simprbda φ Q M -1 W Q Y
154 127 153 syldan φ ψ Q Y
155 fveq2 x = Q M x = M Q
156 fveq2 x = Q N x = N Q
157 155 156 eqeq12d x = Q M x = N x M Q = N Q
158 157 elrab3 Q Y Q x Y | M x = N x M Q = N Q
159 154 158 syl φ ψ Q x Y | M x = N x M Q = N Q
160 fveq2 x = R M x = M R
161 fveq2 x = R N x = N R
162 160 161 eqeq12d x = R M x = N x M R = N R
163 162 elrab3 R Y R x Y | M x = N x M R = N R
164 29 163 syl φ ψ R x Y | M x = N x M R = N R
165 152 159 164 3imtr4d φ ψ Q x Y | M x = N x R x Y | M x = N x
166 34 ffnd φ N Fn Y
167 fndmin M Fn Y N Fn Y dom M N = x Y | M x = N x
168 25 166 167 syl2anc φ dom M N = x Y | M x = N x
169 168 adantr φ ψ dom M N = x Y | M x = N x
170 169 eleq2d φ ψ Q dom M N Q x Y | M x = N x
171 169 eleq2d φ ψ R dom M N R x Y | M x = N x
172 165 170 171 3imtr4d φ ψ Q dom M N R dom M N