Metamath Proof Explorer


Theorem cycpmco2lem5

Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M=toCycD
cycpmco2.s S=SymGrpD
cycpmco2.d φDV
cycpmco2.w φWdomM
cycpmco2.i φIDranW
cycpmco2.j φJranW
cycpmco2.e E=W-1J+1
cycpmco2.1 U=WspliceEE⟨“I”⟩
cycpmco2lem.1 φKranW
cycpmco2lem5.1 φU-1K=U1
Assertion cycpmco2lem5 φMUK=MWK

Proof

Step Hyp Ref Expression
1 cycpmco2.c M=toCycD
2 cycpmco2.s S=SymGrpD
3 cycpmco2.d φDV
4 cycpmco2.w φWdomM
5 cycpmco2.i φIDranW
6 cycpmco2.j φJranW
7 cycpmco2.e E=W-1J+1
8 cycpmco2.1 U=WspliceEE⟨“I”⟩
9 cycpmco2lem.1 φKranW
10 cycpmco2lem5.1 φU-1K=U1
11 9 adantr φW=EKranW
12 ovexd φW-1J+1V
13 7 12 eqeltrid φEV
14 5 eldifad φID
15 14 s1cld φ⟨“I”⟩WordD
16 splval WdomMEVEV⟨“I”⟩WordDWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
17 4 13 13 15 16 syl13anc φWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
18 8 17 eqtrid φU=WprefixE++⟨“I”⟩++WsubstrEW
19 18 fveq2d φU=WprefixE++⟨“I”⟩++WsubstrEW
20 ssrab2 wWordD|w:domw1-1DWordD
21 eqid BaseS=BaseS
22 1 2 21 tocycf DVM:wWordD|w:domw1-1DBaseS
23 3 22 syl φM:wWordD|w:domw1-1DBaseS
24 23 fdmd φdomM=wWordD|w:domw1-1D
25 4 24 eleqtrd φWwWordD|w:domw1-1D
26 20 25 sselid φWWordD
27 pfxcl WWordDWprefixEWordD
28 26 27 syl φWprefixEWordD
29 ccatcl WprefixEWordD⟨“I”⟩WordDWprefixE++⟨“I”⟩WordD
30 28 15 29 syl2anc φWprefixE++⟨“I”⟩WordD
31 swrdcl WWordDWsubstrEWWordD
32 26 31 syl φWsubstrEWWordD
33 ccatlen WprefixE++⟨“I”⟩WordDWsubstrEWWordDWprefixE++⟨“I”⟩++WsubstrEW=WprefixE++⟨“I”⟩+WsubstrEW
34 30 32 33 syl2anc φWprefixE++⟨“I”⟩++WsubstrEW=WprefixE++⟨“I”⟩+WsubstrEW
35 ccatws1len WprefixEWordDWprefixE++⟨“I”⟩=WprefixE+1
36 28 35 syl φWprefixE++⟨“I”⟩=WprefixE+1
37 id w=Ww=W
38 dmeq w=Wdomw=domW
39 eqidd w=WD=D
40 37 38 39 f1eq123d w=Ww:domw1-1DW:domW1-1D
41 40 elrab WwWordD|w:domw1-1DWWordDW:domW1-1D
42 25 41 sylib φWWordDW:domW1-1D
43 42 simprd φW:domW1-1D
44 f1cnv W:domW1-1DW-1:ranW1-1 ontodomW
45 43 44 syl φW-1:ranW1-1 ontodomW
46 f1of W-1:ranW1-1 ontodomWW-1:ranWdomW
47 45 46 syl φW-1:ranWdomW
48 47 6 ffvelcdmd φW-1JdomW
49 wrddm WWordDdomW=0..^W
50 26 49 syl φdomW=0..^W
51 48 50 eleqtrd φW-1J0..^W
52 fzofzp1 W-1J0..^WW-1J+10W
53 51 52 syl φW-1J+10W
54 7 53 eqeltrid φE0W
55 pfxlen WWordDE0WWprefixE=E
56 26 54 55 syl2anc φWprefixE=E
57 56 oveq1d φWprefixE+1=E+1
58 36 57 eqtrd φWprefixE++⟨“I”⟩=E+1
59 lencl WWordDW0
60 26 59 syl φW0
61 nn0fz0 W0W0W
62 60 61 sylib φW0W
63 swrdlen WWordDE0WW0WWsubstrEW=WE
64 26 54 62 63 syl3anc φWsubstrEW=WE
65 58 64 oveq12d φWprefixE++⟨“I”⟩+WsubstrEW=E+1+WE
66 19 34 65 3eqtrd φU=E+1+WE
67 fz0ssnn0 0W0
68 67 54 sselid φE0
69 68 nn0zd φE
70 69 peano2zd φE+1
71 70 zcnd φE+1
72 60 nn0cnd φW
73 68 nn0cnd φE
74 71 72 73 addsubassd φE+1+W-E=E+1+WE
75 1cnd φ1
76 73 75 72 addassd φE+1+W=E+1+W
77 76 oveq1d φE+1+W-E=E+1+W-E
78 66 74 77 3eqtr2d φU=E+1+W-E
79 75 72 addcld φ1+W
80 73 79 pncan2d φE+1+W-E=1+W
81 75 72 addcomd φ1+W=W+1
82 78 80 81 3eqtrd φU=W+1
83 oveq1 W=EW+1=E+1
84 82 83 sylan9eq φW=EU=E+1
85 84 oveq1d φW=EU1=E+1-1
86 73 75 pncand φE+1-1=E
87 86 adantr φW=EE+1-1=E
88 85 87 eqtrd φW=EU1=E
89 88 fveq2d φW=EUU1=UE
90 10 fveq2d φUU-1K=UU1
91 1 2 3 4 5 6 7 8 cycpmco2f1 φU:domU1-1D
92 f1f1orn U:domU1-1DU:domU1-1 ontoranU
93 91 92 syl φU:domU1-1 ontoranU
94 ssun1 ranWranWI
95 1 2 3 4 5 6 7 8 cycpmco2rn φranU=ranWI
96 94 95 sseqtrrid φranWranU
97 96 sselda φKranWKranU
98 f1ocnvfv2 U:domU1-1 ontoranUKranUUU-1K=K
99 93 97 98 syl2an2r φKranWUU-1K=K
100 9 99 mpdan φUU-1K=K
101 90 100 eqtr3d φUU1=K
102 101 adantr φW=EUU1=K
103 1 2 3 4 5 6 7 8 cycpmco2lem2 φUE=I
104 103 adantr φW=EUE=I
105 89 102 104 3eqtr3d φW=EK=I
106 5 eldifbd φ¬IranW
107 106 adantr φW=E¬IranW
108 105 107 eqneltrd φW=E¬KranW
109 11 108 pm2.21dd φW=EMUUU1=MWUU1
110 splcl WWordD⟨“I”⟩WordDWspliceEE⟨“I”⟩WordD
111 26 15 110 syl2anc φWspliceEE⟨“I”⟩WordD
112 8 111 eqeltrid φUWordD
113 nn0p1gt0 W00<W+1
114 60 113 syl φ0<W+1
115 114 82 breqtrrd φ0<U
116 eqidd φU1=U1
117 1 3 112 91 115 116 cycpmfv2 φMUUU1=U0
118 117 adantr φWEMUUU1=U0
119 f1f W:domW1-1DW:domWD
120 43 119 syl φW:domWD
121 120 frnd φranWD
122 3 121 ssexd φranWV
123 6 ne0d φranW
124 hashgt0 ranWVranW0<ranW
125 122 123 124 syl2anc φ0<ranW
126 4 dmexd φdomWV
127 hashf1rn domWVW:domW1-1DW=ranW
128 126 43 127 syl2anc φW=ranW
129 125 128 breqtrrd φ0<W
130 eqidd φW1=W1
131 1 3 26 43 129 130 cycpmfv2 φMWWW1=W0
132 131 adantr φWEMWWW1=W0
133 8 a1i φWEU=WspliceEE⟨“I”⟩
134 1 2 3 4 5 6 7 8 cycpmco2lem3 φU1=W
135 73 75 addcomd φE+1=1+E
136 135 oveq2d φW-1-E+E+1=W-1-E+1+E
137 72 75 subcld φW1
138 137 73 75 nppcan3d φW-1-E+1+E=W-1+1
139 72 75 npcand φW-1+1=W
140 136 138 139 3eqtrd φW-1-E+E+1=W
141 134 140 eqtr4d φU1=W-1-E+E+1
142 141 adantr φWEU1=W-1-E+E+1
143 133 142 fveq12d φWEUU1=WspliceEE⟨“I”⟩W-1-E+E+1
144 26 adantr φWEWWordD
145 nn0fz0 E0E0E
146 68 145 sylib φE0E
147 146 adantr φWEE0E
148 54 adantr φWEE0W
149 15 adantr φWE⟨“I”⟩WordD
150 72 adantr φWEW
151 1cnd φWE1
152 73 adantr φWEE
153 150 151 152 sub32d φWEW-1-E=W-E-1
154 fznn0sub E0WWE0
155 54 154 syl φWE0
156 155 adantr φWEWE0
157 simpr φWEWE
158 150 152 156 157 subne0nn φWEWE
159 fzo0end WEW-E-10..^WE
160 158 159 syl φWEW-E-10..^WE
161 153 160 eqeltrd φWEW-1-E0..^WE
162 s1len ⟨“I”⟩=1
163 162 eqcomi 1=⟨“I”⟩
164 163 oveq2i E+1=E+⟨“I”⟩
165 164 a1i φWEE+1=E+⟨“I”⟩
166 144 147 148 149 161 165 splfv3 φWEWspliceEE⟨“I”⟩W-1-E+E+1=WW1-E+E
167 137 73 npcand φW1-E+E=W1
168 167 fveq2d φWW1-E+E=WW1
169 168 adantr φWEWW1-E+E=WW1
170 143 166 169 3eqtrd φWEUU1=WW1
171 170 fveq2d φWEMWUU1=MWWW1
172 18 fveq1d φU0=WprefixE++⟨“I”⟩++WsubstrEW0
173 nn0p1nn E0E+1
174 68 173 syl φE+1
175 lbfzo0 00..^E+1E+1
176 174 175 sylibr φ00..^E+1
177 58 oveq2d φ0..^WprefixE++⟨“I”⟩=0..^E+1
178 176 177 eleqtrrd φ00..^WprefixE++⟨“I”⟩
179 ccatval1 WprefixE++⟨“I”⟩WordDWsubstrEWWordD00..^WprefixE++⟨“I”⟩WprefixE++⟨“I”⟩++WsubstrEW0=WprefixE++⟨“I”⟩0
180 30 32 178 179 syl3anc φWprefixE++⟨“I”⟩++WsubstrEW0=WprefixE++⟨“I”⟩0
181 elfzonn0 W-1J0..^WW-1J0
182 51 181 syl φW-1J0
183 nn0p1nn W-1J0W-1J+1
184 182 183 syl φW-1J+1
185 7 184 eqeltrid φE
186 lbfzo0 00..^EE
187 185 186 sylibr φ00..^E
188 56 oveq2d φ0..^WprefixE=0..^E
189 187 188 eleqtrrd φ00..^WprefixE
190 ccatval1 WprefixEWordD⟨“I”⟩WordD00..^WprefixEWprefixE++⟨“I”⟩0=WprefixE0
191 28 15 189 190 syl3anc φWprefixE++⟨“I”⟩0=WprefixE0
192 nn0p1gt0 W-1J00<W-1J+1
193 182 192 syl φ0<W-1J+1
194 193 7 breqtrrdi φ0<E
195 194 gt0ne0d φE0
196 fzne1 E0WE0E0+1W
197 54 195 196 syl2anc φE0+1W
198 0p1e1 0+1=1
199 198 oveq1i 0+1W=1W
200 197 199 eleqtrdi φE1W
201 pfxfv0 WWordDE1WWprefixE0=W0
202 26 200 201 syl2anc φWprefixE0=W0
203 180 191 202 3eqtrd φWprefixE++⟨“I”⟩++WsubstrEW0=W0
204 172 203 eqtrd φU0=W0
205 204 adantr φWEU0=W0
206 132 171 205 3eqtr4rd φWEU0=MWUU1
207 118 206 eqtrd φWEMUUU1=MWUU1
208 109 207 pm2.61dane φMUUU1=MWUU1
209 101 fveq2d φMUUU1=MUK
210 101 fveq2d φMWUU1=MWK
211 208 209 210 3eqtr3d φMUK=MWK