Metamath Proof Explorer


Theorem dmdprdsplit2lem

Description: Lemma for dmdprdsplit . (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dprdsplit.2 φS:ISubGrpG
dprdsplit.i φCD=
dprdsplit.u φI=CD
dmdprdsplit.z Z=CntzG
dmdprdsplit.0 0˙=0G
dmdprdsplit2.1 φGdomDProdSC
dmdprdsplit2.2 φGdomDProdSD
dmdprdsplit2.3 φGDProdSCZGDProdSD
dmdprdsplit2.4 φGDProdSCGDProdSD=0˙
dmdprdsplit2lem.k K=mrClsSubGrpG
Assertion dmdprdsplit2lem φXCYIXYSXZSYSXKSIX0˙

Proof

Step Hyp Ref Expression
1 dprdsplit.2 φS:ISubGrpG
2 dprdsplit.i φCD=
3 dprdsplit.u φI=CD
4 dmdprdsplit.z Z=CntzG
5 dmdprdsplit.0 0˙=0G
6 dmdprdsplit2.1 φGdomDProdSC
7 dmdprdsplit2.2 φGdomDProdSD
8 dmdprdsplit2.3 φGDProdSCZGDProdSD
9 dmdprdsplit2.4 φGDProdSCGDProdSD=0˙
10 dmdprdsplit2lem.k K=mrClsSubGrpG
11 3 adantr φXCI=CD
12 11 eleq2d φXCYIYCD
13 elun YCDYCYD
14 12 13 bitrdi φXCYIYCYD
15 6 ad2antrr φXCYCXYGdomDProdSC
16 ssun1 CCD
17 16 3 sseqtrrid φCI
18 1 17 fssresd φSC:CSubGrpG
19 18 fdmd φdomSC=C
20 19 ad2antrr φXCYCXYdomSC=C
21 simplr φXCYCXYXC
22 simprl φXCYCXYYC
23 simprr φXCYCXYXY
24 15 20 21 22 23 4 dprdcntz φXCYCXYSCXZSCY
25 fvres XCSCX=SX
26 25 ad2antlr φXCYCXYSCX=SX
27 fvres YCSCY=SY
28 27 ad2antrl φXCYCXYSCY=SY
29 28 fveq2d φXCYCXYZSCY=ZSY
30 24 26 29 3sstr3d φXCYCXYSXZSY
31 30 exp32 φXCYCXYSXZSY
32 25 ad2antlr φXCYDXYSCX=SX
33 6 ad2antrr φXCYDXYGdomDProdSC
34 19 ad2antrr φXCYDXYdomSC=C
35 simplr φXCYDXYXC
36 33 34 35 dprdub φXCYDXYSCXGDProdSC
37 32 36 eqsstrrd φXCYDXYSXGDProdSC
38 8 ad2antrr φXCYDXYGDProdSCZGDProdSD
39 eqid BaseG=BaseG
40 39 dprdssv GDProdSDBaseG
41 fvres YDSDY=SY
42 41 ad2antrl φXCYDXYSDY=SY
43 7 ad2antrr φXCYDXYGdomDProdSD
44 ssun2 DCD
45 44 3 sseqtrrid φDI
46 1 45 fssresd φSD:DSubGrpG
47 46 fdmd φdomSD=D
48 47 ad2antrr φXCYDXYdomSD=D
49 simprl φXCYDXYYD
50 43 48 49 dprdub φXCYDXYSDYGDProdSD
51 42 50 eqsstrrd φXCYDXYSYGDProdSD
52 39 4 cntz2ss GDProdSDBaseGSYGDProdSDZGDProdSDZSY
53 40 51 52 sylancr φXCYDXYZGDProdSDZSY
54 38 53 sstrd φXCYDXYGDProdSCZSY
55 37 54 sstrd φXCYDXYSXZSY
56 55 exp32 φXCYDXYSXZSY
57 31 56 jaod φXCYCYDXYSXZSY
58 14 57 sylbid φXCYIXYSXZSY
59 dprdgrp GdomDProdSCGGrp
60 6 59 syl φGGrp
61 60 adantr φXCGGrp
62 39 subgacs GGrpSubGrpGACSBaseG
63 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
64 61 62 63 3syl φXCSubGrpGMooreBaseG
65 difundir CDX=CXDX
66 11 difeq1d φXCIX=CDX
67 simpr φXCXC
68 67 snssd φXCXC
69 sslin XCDXDC
70 68 69 syl φXCDXDC
71 incom CD=DC
72 2 adantr φXCCD=
73 71 72 eqtr3id φXCDC=
74 sseq0 DXDCDC=DX=
75 70 73 74 syl2anc φXCDX=
76 disj3 DX=D=DX
77 75 76 sylib φXCD=DX
78 77 uneq2d φXCCXD=CXDX
79 65 66 78 3eqtr4a φXCIX=CXD
80 79 imaeq2d φXCSIX=SCXD
81 imaundi SCXD=SCXSD
82 80 81 eqtrdi φXCSIX=SCXSD
83 82 unieqd φXCSIX=SCXSD
84 uniun SCXSD=SCXSD
85 83 84 eqtrdi φXCSIX=SCXSD
86 difss CXC
87 imass2 CXCSCXSC
88 uniss SCXSCSCXSC
89 86 87 88 mp2b SCXSC
90 imassrn SCranS
91 1 frnd φranSSubGrpG
92 91 adantr φXCranSSubGrpG
93 mresspw SubGrpGMooreBaseGSubGrpG𝒫BaseG
94 64 93 syl φXCSubGrpG𝒫BaseG
95 92 94 sstrd φXCranS𝒫BaseG
96 90 95 sstrid φXCSC𝒫BaseG
97 sspwuni SC𝒫BaseGSCBaseG
98 96 97 sylib φXCSCBaseG
99 89 98 sstrid φXCSCXBaseG
100 64 10 99 mrcssidd φXCSCXKSCX
101 imassrn SDranS
102 101 95 sstrid φXCSD𝒫BaseG
103 sspwuni SD𝒫BaseGSDBaseG
104 102 103 sylib φXCSDBaseG
105 64 10 104 mrcssidd φXCSDKSD
106 10 dprdspan GdomDProdSDGDProdSD=KranSD
107 7 106 syl φGDProdSD=KranSD
108 df-ima SD=ranSD
109 108 unieqi SD=ranSD
110 109 fveq2i KSD=KranSD
111 107 110 eqtr4di φGDProdSD=KSD
112 111 adantr φXCGDProdSD=KSD
113 105 112 sseqtrrd φXCSDGDProdSD
114 unss12 SCXKSCXSDGDProdSDSCXSDKSCXGDProdSD
115 100 113 114 syl2anc φXCSCXSDKSCXGDProdSD
116 10 mrccl SubGrpGMooreBaseGSCXBaseGKSCXSubGrpG
117 64 99 116 syl2anc φXCKSCXSubGrpG
118 dprdsubg GdomDProdSDGDProdSDSubGrpG
119 7 118 syl φGDProdSDSubGrpG
120 119 adantr φXCGDProdSDSubGrpG
121 eqid LSSumG=LSSumG
122 121 lsmunss KSCXSubGrpGGDProdSDSubGrpGKSCXGDProdSDKSCXLSSumGGDProdSD
123 117 120 122 syl2anc φXCKSCXGDProdSDKSCXLSSumGGDProdSD
124 115 123 sstrd φXCSCXSDKSCXLSSumGGDProdSD
125 85 124 eqsstrd φXCSIXKSCXLSSumGGDProdSD
126 89 a1i φXCSCXSC
127 64 10 126 98 mrcssd φXCKSCXKSC
128 10 dprdspan GdomDProdSCGDProdSC=KranSC
129 6 128 syl φGDProdSC=KranSC
130 df-ima SC=ranSC
131 130 unieqi SC=ranSC
132 131 fveq2i KSC=KranSC
133 129 132 eqtr4di φGDProdSC=KSC
134 133 adantr φXCGDProdSC=KSC
135 127 134 sseqtrrd φXCKSCXGDProdSC
136 8 adantr φXCGDProdSCZGDProdSD
137 135 136 sstrd φXCKSCXZGDProdSD
138 121 4 lsmsubg KSCXSubGrpGGDProdSDSubGrpGKSCXZGDProdSDKSCXLSSumGGDProdSDSubGrpG
139 117 120 137 138 syl3anc φXCKSCXLSSumGGDProdSDSubGrpG
140 10 mrcsscl SubGrpGMooreBaseGSIXKSCXLSSumGGDProdSDKSCXLSSumGGDProdSDSubGrpGKSIXKSCXLSSumGGDProdSD
141 64 125 139 140 syl3anc φXCKSIXKSCXLSSumGGDProdSD
142 sslin KSIXKSCXLSSumGGDProdSDSXKSIXSXKSCXLSSumGGDProdSD
143 141 142 syl φXCSXKSIXSXKSCXLSSumGGDProdSD
144 17 sselda φXCXI
145 1 ffvelcdmda φXISXSubGrpG
146 144 145 syldan φXCSXSubGrpG
147 25 adantl φXCSCX=SX
148 6 adantr φXCGdomDProdSC
149 19 adantr φXCdomSC=C
150 148 149 67 dprdub φXCSCXGDProdSC
151 147 150 eqsstrrd φXCSXGDProdSC
152 dprdsubg GdomDProdSCGDProdSCSubGrpG
153 6 152 syl φGDProdSCSubGrpG
154 153 adantr φXCGDProdSCSubGrpG
155 121 lsmlub SXSubGrpGKSCXSubGrpGGDProdSCSubGrpGSXGDProdSCKSCXGDProdSCSXLSSumGKSCXGDProdSC
156 146 117 154 155 syl3anc φXCSXGDProdSCKSCXGDProdSCSXLSSumGKSCXGDProdSC
157 151 135 156 mpbi2and φXCSXLSSumGKSCXGDProdSC
158 157 ssrind φXCSXLSSumGKSCXGDProdSDGDProdSCGDProdSD
159 9 adantr φXCGDProdSCGDProdSD=0˙
160 158 159 sseqtrd φXCSXLSSumGKSCXGDProdSD0˙
161 121 lsmub1 SXSubGrpGKSCXSubGrpGSXSXLSSumGKSCX
162 146 117 161 syl2anc φXCSXSXLSSumGKSCX
163 5 subg0cl SXSubGrpG0˙SX
164 146 163 syl φXC0˙SX
165 162 164 sseldd φXC0˙SXLSSumGKSCX
166 5 subg0cl GDProdSDSubGrpG0˙GDProdSD
167 120 166 syl φXC0˙GDProdSD
168 165 167 elind φXC0˙SXLSSumGKSCXGDProdSD
169 168 snssd φXC0˙SXLSSumGKSCXGDProdSD
170 160 169 eqssd φXCSXLSSumGKSCXGDProdSD=0˙
171 resima2 CXCSCCX=SCX
172 86 171 mp1i φXCSCCX=SCX
173 172 unieqd φXCSCCX=SCX
174 173 fveq2d φXCKSCCX=KSCX
175 147 174 ineq12d φXCSCXKSCCX=SXKSCX
176 148 149 67 5 10 dprddisj φXCSCXKSCCX=0˙
177 175 176 eqtr3d φXCSXKSCX=0˙
178 1 adantr φXCS:ISubGrpG
179 ffun S:ISubGrpGFunS
180 funiunfv FunSyCXSy=SCX
181 178 179 180 3syl φXCyCXSy=SCX
182 6 ad2antrr φXCyCXGdomDProdSC
183 19 ad2antrr φXCyCXdomSC=C
184 eldifi yCXyC
185 184 adantl φXCyCXyC
186 simplr φXCyCXXC
187 eldifsni yCXyX
188 187 adantl φXCyCXyX
189 182 183 185 186 188 4 dprdcntz φXCyCXSCyZSCX
190 185 fvresd φXCyCXSCy=Sy
191 25 ad2antlr φXCyCXSCX=SX
192 191 fveq2d φXCyCXZSCX=ZSX
193 189 190 192 3sstr3d φXCyCXSyZSX
194 193 ralrimiva φXCyCXSyZSX
195 iunss yCXSyZSXyCXSyZSX
196 194 195 sylibr φXCyCXSyZSX
197 181 196 eqsstrrd φXCSCXZSX
198 39 subgss SXSubGrpGSXBaseG
199 146 198 syl φXCSXBaseG
200 39 4 cntzsubg GGrpSXBaseGZSXSubGrpG
201 61 199 200 syl2anc φXCZSXSubGrpG
202 10 mrcsscl SubGrpGMooreBaseGSCXZSXZSXSubGrpGKSCXZSX
203 64 197 201 202 syl3anc φXCKSCXZSX
204 4 117 146 203 cntzrecd φXCSXZKSCX
205 121 146 117 120 5 170 177 4 204 lsmdisj3 φXCSXKSCXLSSumGGDProdSD=0˙
206 143 205 sseqtrd φXCSXKSIX0˙
207 58 206 jca φXCYIXYSXZSYSXKSIX0˙