Metamath Proof Explorer


Theorem dvhlveclem

Description: Lemma for dvhlvec . TODO: proof substituting inner part first shorter/longer than substituting outer part first? TODO: break up into smaller lemmas? TODO: does ph -> method shorten proof? (Contributed by NM, 22-Oct-2013) (Proof shortened by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses dvhgrp.b B=BaseK
dvhgrp.h H=LHypK
dvhgrp.t T=LTrnKW
dvhgrp.e E=TEndoKW
dvhgrp.u U=DVecHKW
dvhgrp.d D=ScalarU
dvhgrp.p ˙=+D
dvhgrp.a +˙=+U
dvhgrp.o 0˙=0D
dvhgrp.i I=invgD
dvhlvec.m ×˙=D
dvhlvec.s ·˙=U
Assertion dvhlveclem KHLWHULVec

Proof

Step Hyp Ref Expression
1 dvhgrp.b B=BaseK
2 dvhgrp.h H=LHypK
3 dvhgrp.t T=LTrnKW
4 dvhgrp.e E=TEndoKW
5 dvhgrp.u U=DVecHKW
6 dvhgrp.d D=ScalarU
7 dvhgrp.p ˙=+D
8 dvhgrp.a +˙=+U
9 dvhgrp.o 0˙=0D
10 dvhgrp.i I=invgD
11 dvhlvec.m ×˙=D
12 dvhlvec.s ·˙=U
13 eqid BaseU=BaseU
14 2 3 4 5 13 dvhvbase KHLWHBaseU=T×E
15 14 eqcomd KHLWHT×E=BaseU
16 8 a1i KHLWH+˙=+U
17 6 a1i KHLWHD=ScalarU
18 12 a1i KHLWH·˙=U
19 eqid BaseD=BaseD
20 2 4 5 6 19 dvhbase KHLWHBaseD=E
21 20 eqcomd KHLWHE=BaseD
22 7 a1i KHLWH˙=+D
23 11 a1i KHLWH×˙=D
24 eqid EDRingKW=EDRingKW
25 2 24 5 6 dvhsca KHLWHD=EDRingKW
26 25 fveq2d KHLWH1D=1EDRingKW
27 eqid 1EDRingKW=1EDRingKW
28 2 3 24 27 erng1r KHLWH1EDRingKW=IT
29 26 28 eqtr2d KHLWHIT=1D
30 2 24 erngdv KHLWHEDRingKWDivRing
31 25 30 eqeltrd KHLWHDDivRing
32 drngring DDivRingDRing
33 31 32 syl KHLWHDRing
34 1 2 3 4 5 6 7 8 9 10 dvhgrp KHLWHUGrp
35 2 3 4 5 12 dvhvscacl KHLWHsEtT×Es·˙tT×E
36 35 3impb KHLWHsEtT×Es·˙tT×E
37 simpl KHLWHsEtT×EfT×EKHLWH
38 simpr1 KHLWHsEtT×EfT×EsE
39 simpr2 KHLWHsEtT×EfT×EtT×E
40 xp1st tT×E1sttT
41 39 40 syl KHLWHsEtT×EfT×E1sttT
42 simpr3 KHLWHsEtT×EfT×EfT×E
43 xp1st fT×E1stfT
44 42 43 syl KHLWHsEtT×EfT×E1stfT
45 2 3 4 tendospdi1 KHLWHsE1sttT1stfTs1stt1stf=s1stts1stf
46 37 38 41 44 45 syl13anc KHLWHsEtT×EfT×Es1stt1stf=s1stts1stf
47 2 3 4 5 6 8 7 dvhvadd KHLWHtT×EfT×Et+˙f=1stt1stf2ndt˙2ndf
48 47 3adantr1 KHLWHsEtT×EfT×Et+˙f=1stt1stf2ndt˙2ndf
49 48 fveq2d KHLWHsEtT×EfT×E1stt+˙f=1st1stt1stf2ndt˙2ndf
50 fvex 1sttV
51 fvex 1stfV
52 50 51 coex 1stt1stfV
53 ovex 2ndt˙2ndfV
54 52 53 op1st 1st1stt1stf2ndt˙2ndf=1stt1stf
55 49 54 eqtrdi KHLWHsEtT×EfT×E1stt+˙f=1stt1stf
56 55 fveq2d KHLWHsEtT×EfT×Es1stt+˙f=s1stt1stf
57 2 3 4 5 12 dvhvsca KHLWHsEtT×Es·˙t=s1stts2ndt
58 57 3adantr3 KHLWHsEtT×EfT×Es·˙t=s1stts2ndt
59 58 fveq2d KHLWHsEtT×EfT×E1sts·˙t=1sts1stts2ndt
60 fvex s1sttV
61 vex sV
62 fvex 2ndtV
63 61 62 coex s2ndtV
64 60 63 op1st 1sts1stts2ndt=s1stt
65 59 64 eqtrdi KHLWHsEtT×EfT×E1sts·˙t=s1stt
66 2 3 4 5 12 dvhvsca KHLWHsEfT×Es·˙f=s1stfs2ndf
67 66 3adantr2 KHLWHsEtT×EfT×Es·˙f=s1stfs2ndf
68 67 fveq2d KHLWHsEtT×EfT×E1sts·˙f=1sts1stfs2ndf
69 fvex s1stfV
70 fvex 2ndfV
71 61 70 coex s2ndfV
72 69 71 op1st 1sts1stfs2ndf=s1stf
73 68 72 eqtrdi KHLWHsEtT×EfT×E1sts·˙f=s1stf
74 65 73 coeq12d KHLWHsEtT×EfT×E1sts·˙t1sts·˙f=s1stts1stf
75 46 56 74 3eqtr4d KHLWHsEtT×EfT×Es1stt+˙f=1sts·˙t1sts·˙f
76 33 adantr KHLWHsEtT×EfT×EDRing
77 21 adantr KHLWHsEtT×EfT×EE=BaseD
78 38 77 eleqtrd KHLWHsEtT×EfT×EsBaseD
79 xp2nd tT×E2ndtE
80 39 79 syl KHLWHsEtT×EfT×E2ndtE
81 80 77 eleqtrd KHLWHsEtT×EfT×E2ndtBaseD
82 xp2nd fT×E2ndfE
83 42 82 syl KHLWHsEtT×EfT×E2ndfE
84 83 77 eleqtrd KHLWHsEtT×EfT×E2ndfBaseD
85 19 7 11 ringdi DRingsBaseD2ndtBaseD2ndfBaseDs×˙2ndt˙2ndf=s×˙2ndt˙s×˙2ndf
86 76 78 81 84 85 syl13anc KHLWHsEtT×EfT×Es×˙2ndt˙2ndf=s×˙2ndt˙s×˙2ndf
87 19 7 ringacl DRing2ndtBaseD2ndfBaseD2ndt˙2ndfBaseD
88 76 81 84 87 syl3anc KHLWHsEtT×EfT×E2ndt˙2ndfBaseD
89 88 77 eleqtrrd KHLWHsEtT×EfT×E2ndt˙2ndfE
90 2 3 4 5 6 11 dvhmulr KHLWHsE2ndt˙2ndfEs×˙2ndt˙2ndf=s2ndt˙2ndf
91 37 38 89 90 syl12anc KHLWHsEtT×EfT×Es×˙2ndt˙2ndf=s2ndt˙2ndf
92 2 3 4 5 6 11 dvhmulr KHLWHsE2ndtEs×˙2ndt=s2ndt
93 37 38 80 92 syl12anc KHLWHsEtT×EfT×Es×˙2ndt=s2ndt
94 2 3 4 5 6 11 dvhmulr KHLWHsE2ndfEs×˙2ndf=s2ndf
95 37 38 83 94 syl12anc KHLWHsEtT×EfT×Es×˙2ndf=s2ndf
96 93 95 oveq12d KHLWHsEtT×EfT×Es×˙2ndt˙s×˙2ndf=s2ndt˙s2ndf
97 86 91 96 3eqtr3d KHLWHsEtT×EfT×Es2ndt˙2ndf=s2ndt˙s2ndf
98 48 fveq2d KHLWHsEtT×EfT×E2ndt+˙f=2nd1stt1stf2ndt˙2ndf
99 52 53 op2nd 2nd1stt1stf2ndt˙2ndf=2ndt˙2ndf
100 98 99 eqtrdi KHLWHsEtT×EfT×E2ndt+˙f=2ndt˙2ndf
101 100 coeq2d KHLWHsEtT×EfT×Es2ndt+˙f=s2ndt˙2ndf
102 58 fveq2d KHLWHsEtT×EfT×E2nds·˙t=2nds1stts2ndt
103 60 63 op2nd 2nds1stts2ndt=s2ndt
104 102 103 eqtrdi KHLWHsEtT×EfT×E2nds·˙t=s2ndt
105 67 fveq2d KHLWHsEtT×EfT×E2nds·˙f=2nds1stfs2ndf
106 69 71 op2nd 2nds1stfs2ndf=s2ndf
107 105 106 eqtrdi KHLWHsEtT×EfT×E2nds·˙f=s2ndf
108 104 107 oveq12d KHLWHsEtT×EfT×E2nds·˙t˙2nds·˙f=s2ndt˙s2ndf
109 97 101 108 3eqtr4d KHLWHsEtT×EfT×Es2ndt+˙f=2nds·˙t˙2nds·˙f
110 75 109 opeq12d KHLWHsEtT×EfT×Es1stt+˙fs2ndt+˙f=1sts·˙t1sts·˙f2nds·˙t˙2nds·˙f
111 2 3 4 5 6 7 8 dvhvaddcl KHLWHtT×EfT×Et+˙fT×E
112 111 3adantr1 KHLWHsEtT×EfT×Et+˙fT×E
113 2 3 4 5 12 dvhvsca KHLWHsEt+˙fT×Es·˙t+˙f=s1stt+˙fs2ndt+˙f
114 37 38 112 113 syl12anc KHLWHsEtT×EfT×Es·˙t+˙f=s1stt+˙fs2ndt+˙f
115 35 3adantr3 KHLWHsEtT×EfT×Es·˙tT×E
116 2 3 4 5 12 dvhvscacl KHLWHsEfT×Es·˙fT×E
117 116 3adantr2 KHLWHsEtT×EfT×Es·˙fT×E
118 2 3 4 5 6 8 7 dvhvadd KHLWHs·˙tT×Es·˙fT×Es·˙t+˙s·˙f=1sts·˙t1sts·˙f2nds·˙t˙2nds·˙f
119 37 115 117 118 syl12anc KHLWHsEtT×EfT×Es·˙t+˙s·˙f=1sts·˙t1sts·˙f2nds·˙t˙2nds·˙f
120 110 114 119 3eqtr4d KHLWHsEtT×EfT×Es·˙t+˙f=s·˙t+˙s·˙f
121 simpl KHLWHsEtEfT×EKHLWH
122 simpr1 KHLWHsEtEfT×EsE
123 simpr2 KHLWHsEtEfT×EtE
124 simpr3 KHLWHsEtEfT×EfT×E
125 124 43 syl KHLWHsEtEfT×E1stfT
126 eqid +EDRingKW=+EDRingKW
127 2 3 4 24 126 erngplus2 KHLWHsEtE1stfTs+EDRingKWt1stf=s1stft1stf
128 121 122 123 125 127 syl13anc KHLWHsEtEfT×Es+EDRingKWt1stf=s1stft1stf
129 25 fveq2d KHLWH+D=+EDRingKW
130 7 129 eqtrid KHLWH˙=+EDRingKW
131 130 oveqd KHLWHs˙t=s+EDRingKWt
132 131 fveq1d KHLWHs˙t1stf=s+EDRingKWt1stf
133 132 adantr KHLWHsEtEfT×Es˙t1stf=s+EDRingKWt1stf
134 66 3adantr2 KHLWHsEtEfT×Es·˙f=s1stfs2ndf
135 134 fveq2d KHLWHsEtEfT×E1sts·˙f=1sts1stfs2ndf
136 135 72 eqtrdi KHLWHsEtEfT×E1sts·˙f=s1stf
137 2 3 4 5 12 dvhvsca KHLWHtEfT×Et·˙f=t1stft2ndf
138 137 3adantr1 KHLWHsEtEfT×Et·˙f=t1stft2ndf
139 138 fveq2d KHLWHsEtEfT×E1stt·˙f=1stt1stft2ndf
140 fvex t1stfV
141 vex tV
142 141 70 coex t2ndfV
143 140 142 op1st 1stt1stft2ndf=t1stf
144 139 143 eqtrdi KHLWHsEtEfT×E1stt·˙f=t1stf
145 136 144 coeq12d KHLWHsEtEfT×E1sts·˙f1stt·˙f=s1stft1stf
146 128 133 145 3eqtr4d KHLWHsEtEfT×Es˙t1stf=1sts·˙f1stt·˙f
147 33 adantr KHLWHsEtEfT×EDRing
148 21 adantr KHLWHsEtEfT×EE=BaseD
149 122 148 eleqtrd KHLWHsEtEfT×EsBaseD
150 123 148 eleqtrd KHLWHsEtEfT×EtBaseD
151 124 82 syl KHLWHsEtEfT×E2ndfE
152 151 148 eleqtrd KHLWHsEtEfT×E2ndfBaseD
153 19 7 11 ringdir DRingsBaseDtBaseD2ndfBaseDs˙t×˙2ndf=s×˙2ndf˙t×˙2ndf
154 147 149 150 152 153 syl13anc KHLWHsEtEfT×Es˙t×˙2ndf=s×˙2ndf˙t×˙2ndf
155 19 7 ringacl DRingsBaseDtBaseDs˙tBaseD
156 147 149 150 155 syl3anc KHLWHsEtEfT×Es˙tBaseD
157 156 148 eleqtrrd KHLWHsEtEfT×Es˙tE
158 2 3 4 5 6 11 dvhmulr KHLWHs˙tE2ndfEs˙t×˙2ndf=s˙t2ndf
159 121 157 151 158 syl12anc KHLWHsEtEfT×Es˙t×˙2ndf=s˙t2ndf
160 121 122 151 94 syl12anc KHLWHsEtEfT×Es×˙2ndf=s2ndf
161 2 3 4 5 6 11 dvhmulr KHLWHtE2ndfEt×˙2ndf=t2ndf
162 121 123 151 161 syl12anc KHLWHsEtEfT×Et×˙2ndf=t2ndf
163 160 162 oveq12d KHLWHsEtEfT×Es×˙2ndf˙t×˙2ndf=s2ndf˙t2ndf
164 154 159 163 3eqtr3d KHLWHsEtEfT×Es˙t2ndf=s2ndf˙t2ndf
165 134 fveq2d KHLWHsEtEfT×E2nds·˙f=2nds1stfs2ndf
166 165 106 eqtrdi KHLWHsEtEfT×E2nds·˙f=s2ndf
167 138 fveq2d KHLWHsEtEfT×E2ndt·˙f=2ndt1stft2ndf
168 140 142 op2nd 2ndt1stft2ndf=t2ndf
169 167 168 eqtrdi KHLWHsEtEfT×E2ndt·˙f=t2ndf
170 166 169 oveq12d KHLWHsEtEfT×E2nds·˙f˙2ndt·˙f=s2ndf˙t2ndf
171 164 170 eqtr4d KHLWHsEtEfT×Es˙t2ndf=2nds·˙f˙2ndt·˙f
172 146 171 opeq12d KHLWHsEtEfT×Es˙t1stfs˙t2ndf=1sts·˙f1stt·˙f2nds·˙f˙2ndt·˙f
173 2 3 4 5 12 dvhvsca KHLWHs˙tEfT×Es˙t·˙f=s˙t1stfs˙t2ndf
174 121 157 124 173 syl12anc KHLWHsEtEfT×Es˙t·˙f=s˙t1stfs˙t2ndf
175 116 3adantr2 KHLWHsEtEfT×Es·˙fT×E
176 2 3 4 5 12 dvhvscacl KHLWHtEfT×Et·˙fT×E
177 176 3adantr1 KHLWHsEtEfT×Et·˙fT×E
178 2 3 4 5 6 8 7 dvhvadd KHLWHs·˙fT×Et·˙fT×Es·˙f+˙t·˙f=1sts·˙f1stt·˙f2nds·˙f˙2ndt·˙f
179 121 175 177 178 syl12anc KHLWHsEtEfT×Es·˙f+˙t·˙f=1sts·˙f1stt·˙f2nds·˙f˙2ndt·˙f
180 172 174 179 3eqtr4d KHLWHsEtEfT×Es˙t·˙f=s·˙f+˙t·˙f
181 2 3 4 tendocoval KHLWHsEtE1stfTst1stf=st1stf
182 121 122 123 125 181 syl121anc KHLWHsEtEfT×Est1stf=st1stf
183 coass st2ndf=st2ndf
184 183 a1i KHLWHsEtEfT×Est2ndf=st2ndf
185 182 184 opeq12d KHLWHsEtEfT×Est1stfst2ndf=st1stfst2ndf
186 2 4 tendococl KHLWHsEtEstE
187 121 122 123 186 syl3anc KHLWHsEtEfT×EstE
188 2 3 4 5 12 dvhvsca KHLWHstEfT×Est·˙f=st1stfst2ndf
189 121 187 124 188 syl12anc KHLWHsEtEfT×Est·˙f=st1stfst2ndf
190 2 3 4 tendocl KHLWHtE1stfTt1stfT
191 121 123 125 190 syl3anc KHLWHsEtEfT×Et1stfT
192 2 4 tendococl KHLWHtE2ndfEt2ndfE
193 121 123 151 192 syl3anc KHLWHsEtEfT×Et2ndfE
194 2 3 4 5 12 dvhopvsca KHLWHsEt1stfTt2ndfEs·˙t1stft2ndf=st1stfst2ndf
195 121 122 191 193 194 syl13anc KHLWHsEtEfT×Es·˙t1stft2ndf=st1stfst2ndf
196 185 189 195 3eqtr4d KHLWHsEtEfT×Est·˙f=s·˙t1stft2ndf
197 2 3 4 5 6 11 dvhmulr KHLWHsEtEs×˙t=st
198 197 3adantr3 KHLWHsEtEfT×Es×˙t=st
199 198 oveq1d KHLWHsEtEfT×Es×˙t·˙f=st·˙f
200 138 oveq2d KHLWHsEtEfT×Es·˙t·˙f=s·˙t1stft2ndf
201 196 199 200 3eqtr4d KHLWHsEtEfT×Es×˙t·˙f=s·˙t·˙f
202 xp1st sT×E1stsT
203 202 adantl KHLWHsT×E1stsT
204 fvresi 1stsTIT1sts=1sts
205 203 204 syl KHLWHsT×EIT1sts=1sts
206 xp2nd sT×E2ndsE
207 2 3 4 tendof KHLWH2ndsE2nds:TT
208 206 207 sylan2 KHLWHsT×E2nds:TT
209 fcoi2 2nds:TTIT2nds=2nds
210 208 209 syl KHLWHsT×EIT2nds=2nds
211 205 210 opeq12d KHLWHsT×EIT1stsIT2nds=1sts2nds
212 2 3 4 tendoidcl KHLWHITE
213 212 anim1i KHLWHsT×EITEsT×E
214 2 3 4 5 12 dvhvsca KHLWHITEsT×EIT·˙s=IT1stsIT2nds
215 213 214 syldan KHLWHsT×EIT·˙s=IT1stsIT2nds
216 1st2nd2 sT×Es=1sts2nds
217 216 adantl KHLWHsT×Es=1sts2nds
218 211 215 217 3eqtr4d KHLWHsT×EIT·˙s=s
219 15 16 17 18 21 22 23 29 33 34 36 120 180 201 218 islmodd KHLWHULMod
220 6 islvec ULVecULModDDivRing
221 219 31 220 sylanbrc KHLWHULVec