Metamath Proof Explorer


Theorem fibp1

Description: Value of the Fibonacci sequence at higher indices. (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Assertion fibp1 NFibciN+1=FibciN1+FibciN

Proof

Step Hyp Ref Expression
1 df-fib Fibci=⟨“01”⟩seqstrwWord0.-12ww2+ww1
2 1 fveq1i FibciN+1=⟨“01”⟩seqstrwWord0.-12ww2+ww1N+1
3 2 a1i NFibciN+1=⟨“01”⟩seqstrwWord0.-12ww2+ww1N+1
4 nn0ex 0V
5 4 a1i N0V
6 0nn0 00
7 6 a1i N00
8 1nn0 10
9 8 a1i N10
10 7 9 s2cld N⟨“01”⟩Word0
11 eqid Word0.-1⟨“01”⟩=Word0.-1⟨“01”⟩
12 fiblem wWord0.-12ww2+ww1:Word0.-1⟨“01”⟩0
13 12 a1i NwWord0.-12ww2+ww1:Word0.-1⟨“01”⟩0
14 eluzp1p1 N1N+11+1
15 nnuz =1
16 14 15 eleq2s NN+11+1
17 s2len ⟨“01”⟩=2
18 1p1e2 1+1=2
19 17 18 eqtr4i ⟨“01”⟩=1+1
20 19 fveq2i ⟨“01”⟩=1+1
21 16 20 eleqtrrdi NN+1⟨“01”⟩
22 5 10 11 13 21 sseqp1 N⟨“01”⟩seqstrwWord0.-12ww2+ww1N+1=wWord0.-12ww2+ww1⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1
23 id w=tw=t
24 fveq2 w=tw=t
25 24 oveq1d w=tw2=t2
26 23 25 fveq12d w=tww2=tt2
27 24 oveq1d w=tw1=t1
28 23 27 fveq12d w=tww1=tt1
29 26 28 oveq12d w=tww2+ww1=tt2+tt1
30 29 cbvmptv wWord0.-12ww2+ww1=tWord0.-12tt2+tt1
31 30 a1i NwWord0.-12ww2+ww1=tWord0.-12tt2+tt1
32 simpr Nt=⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1t=⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1
33 1 a1i Nt=⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1Fibci=⟨“01”⟩seqstrwWord0.-12ww2+ww1
34 33 reseq1d Nt=⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1Fibci0..^N+1=⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1
35 32 34 eqtr4d Nt=⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1t=Fibci0..^N+1
36 simpr Nt=Fibci0..^N+1t=Fibci0..^N+1
37 36 fveq2d Nt=Fibci0..^N+1t=Fibci0..^N+1
38 5 10 11 13 sseqf N⟨“01”⟩seqstrwWord0.-12ww2+ww1:00
39 1 a1i NFibci=⟨“01”⟩seqstrwWord0.-12ww2+ww1
40 39 feq1d NFibci:00⟨“01”⟩seqstrwWord0.-12ww2+ww1:00
41 38 40 mpbird NFibci:00
42 nnnn0 NN0
43 42 9 nn0addcld NN+10
44 5 41 43 subiwrdlen NFibci0..^N+1=N+1
45 44 adantr Nt=Fibci0..^N+1Fibci0..^N+1=N+1
46 37 45 eqtrd Nt=Fibci0..^N+1t=N+1
47 46 oveq1d Nt=Fibci0..^N+1t2=N+1-2
48 nncn NN
49 1cnd N1
50 2cnd N2
51 48 49 50 addsubassd NN+1-2=N+1-2
52 48 50 49 subsub2d NN21=N+1-2
53 2m1e1 21=1
54 53 oveq2i N21=N1
55 54 a1i NN21=N1
56 51 52 55 3eqtr2d NN+1-2=N1
57 56 adantr Nt=Fibci0..^N+1N+1-2=N1
58 47 57 eqtrd Nt=Fibci0..^N+1t2=N1
59 58 fveq2d Nt=Fibci0..^N+1tt2=tN1
60 36 fveq1d Nt=Fibci0..^N+1tN1=Fibci0..^N+1N1
61 nnm1nn0 NN10
62 peano2nn NN+1
63 nnre NN
64 2re 2
65 64 a1i N2
66 63 65 readdcld NN+2
67 1red N1
68 2rp 2+
69 68 a1i N2+
70 63 69 ltaddrpd NN<N+2
71 63 66 67 70 ltsub1dd NN1<N+2-1
72 48 50 49 addsubassd NN+2-1=N+2-1
73 53 oveq2i N+2-1=N+1
74 72 73 eqtrdi NN+2-1=N+1
75 71 74 breqtrd NN1<N+1
76 elfzo0 N10..^N+1N10N+1N1<N+1
77 61 62 75 76 syl3anbrc NN10..^N+1
78 77 adantr Nt=Fibci0..^N+1N10..^N+1
79 fvres N10..^N+1Fibci0..^N+1N1=FibciN1
80 78 79 syl Nt=Fibci0..^N+1Fibci0..^N+1N1=FibciN1
81 59 60 80 3eqtrd Nt=Fibci0..^N+1tt2=FibciN1
82 46 oveq1d Nt=Fibci0..^N+1t1=N+1-1
83 simpl Nt=Fibci0..^N+1N
84 83 nncnd Nt=Fibci0..^N+1N
85 1cnd Nt=Fibci0..^N+11
86 84 85 pncand Nt=Fibci0..^N+1N+1-1=N
87 82 86 eqtrd Nt=Fibci0..^N+1t1=N
88 87 fveq2d Nt=Fibci0..^N+1tt1=tN
89 36 fveq1d Nt=Fibci0..^N+1tN=Fibci0..^N+1N
90 nn0fz0 N0N0N
91 42 90 sylib NN0N
92 nnz NN
93 fzval3 N0N=0..^N+1
94 92 93 syl N0N=0..^N+1
95 91 94 eleqtrd NN0..^N+1
96 95 adantr Nt=Fibci0..^N+1N0..^N+1
97 fvres N0..^N+1Fibci0..^N+1N=FibciN
98 96 97 syl Nt=Fibci0..^N+1Fibci0..^N+1N=FibciN
99 88 89 98 3eqtrd Nt=Fibci0..^N+1tt1=FibciN
100 81 99 oveq12d Nt=Fibci0..^N+1tt2+tt1=FibciN1+FibciN
101 35 100 syldan Nt=⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1tt2+tt1=FibciN1+FibciN
102 39 reseq1d NFibci0..^N+1=⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1
103 5 41 43 subiwrd NFibci0..^N+1Word0
104 ovex ⟨“01”⟩seqstrwWord0.-12ww2+ww1V
105 1 104 eqeltri FibciV
106 105 resex Fibci0..^N+1V
107 106 a1i NFibci0..^N+1V
108 18 fveq2i 1+1=2
109 16 108 eleqtrdi NN+12
110 44 109 eqeltrd NFibci0..^N+12
111 hashf .:V0+∞
112 ffn .:V0+∞.FnV
113 elpreima .FnVFibci0..^N+1.-12Fibci0..^N+1VFibci0..^N+12
114 111 112 113 mp2b Fibci0..^N+1.-12Fibci0..^N+1VFibci0..^N+12
115 107 110 114 sylanbrc NFibci0..^N+1.-12
116 103 115 elind NFibci0..^N+1Word0.-12
117 102 116 eqeltrrd N⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1Word0.-12
118 ovex FibciN1+FibciNV
119 118 a1i NFibciN1+FibciNV
120 31 101 117 119 fvmptd NwWord0.-12ww2+ww1⟨“01”⟩seqstrwWord0.-12ww2+ww10..^N+1=FibciN1+FibciN
121 3 22 120 3eqtrd NFibciN+1=FibciN1+FibciN