Metamath Proof Explorer


Theorem flt4lem7

Description: Convert flt4lem5f into a convenient form for nna4b4nsq . TODO-SN: The change to ( A gcd B ) = 1 points at some inefficiency in the lemmas. (Contributed by SN, 25-Aug-2024)

Ref Expression
Hypotheses flt4lem7.a φA
flt4lem7.b φB
flt4lem7.c φC
flt4lem7.1 φ¬2A
flt4lem7.2 φAgcdB=1
flt4lem7.3 φA4+B4=C2
Assertion flt4lem7 φlgh¬2gggcdh=1g4+h4=l2l<C

Proof

Step Hyp Ref Expression
1 flt4lem7.a φA
2 flt4lem7.b φB
3 flt4lem7.c φC
4 flt4lem7.1 φ¬2A
5 flt4lem7.2 φAgcdB=1
6 flt4lem7.3 φA4+B4=C2
7 breq1 l=C+B2+CB22gcdB2l<CC+B2+CB22gcdB2<C
8 oveq1 l=C+B2+CB22gcdB2l2=C+B2+CB22gcdB22
9 8 eqeq2d l=C+B2+CB22gcdB2m4+n4=l2m4+n4=C+B2+CB22gcdB22
10 9 anbi2d l=C+B2+CB22gcdB2mgcdn=1m4+n4=l2mgcdn=1m4+n4=C+B2+CB22gcdB22
11 10 2rexbidv l=C+B2+CB22gcdB2mnmgcdn=1m4+n4=l2mnmgcdn=1m4+n4=C+B2+CB22gcdB22
12 7 11 anbi12d l=C+B2+CB22gcdB2l<Cmnmgcdn=1m4+n4=l2C+B2+CB22gcdB2<Cmnmgcdn=1m4+n4=C+B2+CB22gcdB22
13 eqid C+B2+CB22=C+B2+CB22
14 eqid C+B2CB22=C+B2CB22
15 eqid C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222
16 eqid C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222
17 1 nnsqcld φA2
18 2 nnsqcld φB2
19 2nn0 20
20 19 a1i φ20
21 1 nncnd φA
22 21 flt4lem φA4=A22
23 2 nncnd φB
24 23 flt4lem φB4=B22
25 22 24 oveq12d φA4+B4=A22+B22
26 25 6 eqtr3d φA22+B22=C2
27 2nn 2
28 27 a1i φ2
29 rppwr AB2AgcdB=1A2gcdB2=1
30 1 2 28 29 syl3anc φAgcdB=1A2gcdB2=1
31 5 30 mpd φA2gcdB2=1
32 17 18 3 20 26 31 fltaccoprm φA2gcdC=1
33 1 nnzd φA
34 3 nnzd φC
35 rpexp AC2A2gcdC=1AgcdC=1
36 33 34 28 35 syl3anc φA2gcdC=1AgcdC=1
37 32 36 mpbid φAgcdC=1
38 13 14 15 16 1 2 3 4 37 6 flt4lem5e φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=1C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22=1C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdC+B2+CB22=1C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222C+B2+CB22C+B2+CB22C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=B22B2
39 38 simp2d φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222C+B2+CB22
40 39 simp3d φC+B2+CB22
41 38 simp3d φC+B2+CB22C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=B22B2
42 41 simprd φB2
43 gcdnncl C+B2+CB22B2C+B2+CB22gcdB2
44 40 42 43 syl2anc φC+B2+CB22gcdB2
45 44 nnred φC+B2+CB22gcdB2
46 42 nnred φB2
47 3 nnred φC
48 40 nnzd φC+B2+CB22
49 48 42 gcdle2d φC+B2+CB22gcdB2B2
50 2 nnred φB
51 2 nnrpd φB+
52 rphalflt B+B2<B
53 51 52 syl φB2<B
54 18 nnred φB2
55 4nn0 40
56 55 a1i φ40
57 2 56 nnexpcld φB4
58 57 nnred φB4
59 3 nnsqcld φC2
60 59 nnred φC2
61 2lt4 2<4
62 2z 2
63 62 a1i φ2
64 4z 4
65 64 a1i φ4
66 1red φ1
67 2re 2
68 67 a1i φ2
69 1lt2 1<2
70 69 a1i φ1<2
71 2t1e2 21=2
72 42 nnge1d φ1B2
73 2rp 2+
74 73 a1i φ2+
75 66 50 74 lemuldiv2d φ21B1B2
76 72 75 mpbird φ21B
77 71 76 eqbrtrrid φ2B
78 66 68 50 70 77 ltletrd φ1<B
79 50 63 65 78 ltexp2d φ2<4B2<B4
80 61 79 mpbii φB2<B4
81 1 56 nnexpcld φA4
82 81 nngt0d φ0<A4
83 81 nnred φA4
84 83 58 ltaddpos2d φ0<A4B4<A4+B4
85 82 84 mpbid φB4<A4+B4
86 85 6 breqtrd φB4<C2
87 54 58 60 80 86 lttrd φB2<C2
88 3 nnrpd φC+
89 51 88 28 ltexp1d φB<CB2<C2
90 87 89 mpbird φB<C
91 46 50 47 53 90 lttrd φB2<C
92 45 46 47 49 91 lelttrd φC+B2+CB22gcdB2<C
93 oveq1 m=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2mgcdn=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdn
94 93 eqeq1d m=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2mgcdn=1C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdn=1
95 oveq1 m=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2m4=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24
96 95 oveq1d m=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2m4+n4=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+n4
97 96 eqeq1d m=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2m4+n4=C+B2+CB22gcdB22C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+n4=C+B2+CB22gcdB22
98 94 97 anbi12d m=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2mgcdn=1m4+n4=C+B2+CB22gcdB22C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdn=1C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+n4=C+B2+CB22gcdB22
99 oveq2 n=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdn=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
100 99 eqeq1d n=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdn=1C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=1
101 oveq1 n=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2n4=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB24
102 101 oveq2d n=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+n4=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB24
103 102 eqeq1d n=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+n4=C+B2+CB22gcdB22C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB24=C+B2+CB22gcdB22
104 100 103 anbi12d n=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdn=1C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+n4=C+B2+CB22gcdB22C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=1C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB24=C+B2+CB22gcdB22
105 39 simp1d φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222
106 gcdnncl C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222B2C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2
107 105 42 106 syl2anc φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2
108 39 simp2d φC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222
109 gcdnncl C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222B2C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
110 108 42 109 syl2anc φC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
111 105 nnzd φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222
112 42 nnzd φB2
113 110 nnzd φC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
114 gcdass C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222B2C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
115 111 112 113 114 syl3anc φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
116 108 nnzd φC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222
117 gcdass B2B2C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222B2gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=B2gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222
118 112 112 116 117 syl3anc φB2gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=B2gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222
119 42 nnnn0d φB20
120 gcdnn0id B20B2gcdB2=B2
121 119 120 syl φB2gcdB2=B2
122 121 oveq1d φB2gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=B2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222
123 112 116 gcdcomd φB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
124 122 123 eqtr2d φC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=B2gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222
125 116 112 gcdcomd φC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=B2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222
126 125 oveq2d φB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=B2gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222
127 118 124 126 3eqtr4rd φB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
128 127 oveq2d φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
129 38 simp1d φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=1C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22=1C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdC+B2+CB22=1
130 129 simp1d φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222=1
131 130 oveq1d φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=1gcdB2
132 gcdass C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222B2C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
133 111 116 112 132 syl3anc φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2
134 1gcd B21gcdB2=1
135 112 134 syl φ1gcdB2=1
136 131 133 135 3eqtr3d φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=1
137 115 128 136 3eqtrd φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=1
138 13 14 15 16 1 2 3 4 37 6 flt4lem5f φC+B2+CB22gcdB22=C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB24
139 138 eqcomd φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB24=C+B2+CB22gcdB22
140 137 139 jca φC+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB2gcdC+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB2=1C+B2+CB22+C+B2CB22+C+B2+CB22C+B2CB222gcdB24+C+B2+CB22+C+B2CB22C+B2+CB22C+B2CB222gcdB24=C+B2+CB22gcdB22
141 98 104 107 110 140 2rspcedvdw φmnmgcdn=1m4+n4=C+B2+CB22gcdB22
142 92 141 jca φC+B2+CB22gcdB2<Cmnmgcdn=1m4+n4=C+B2+CB22gcdB22
143 12 44 142 rspcedvdw φll<Cmnmgcdn=1m4+n4=l2
144 breq2 g=m2g2m
145 144 notbid g=m¬2g¬2m
146 oveq1 g=mggcdh=mgcdh
147 146 eqeq1d g=mggcdh=1mgcdh=1
148 oveq1 g=mg4=m4
149 148 oveq1d g=mg4+h4=m4+h4
150 149 eqeq1d g=mg4+h4=l2m4+h4=l2
151 147 150 anbi12d g=mggcdh=1g4+h4=l2mgcdh=1m4+h4=l2
152 145 151 anbi12d g=m¬2gggcdh=1g4+h4=l2¬2mmgcdh=1m4+h4=l2
153 oveq2 h=nmgcdh=mgcdn
154 153 eqeq1d h=nmgcdh=1mgcdn=1
155 oveq1 h=nh4=n4
156 155 oveq2d h=nm4+h4=m4+n4
157 156 eqeq1d h=nm4+h4=l2m4+n4=l2
158 154 157 anbi12d h=nmgcdh=1m4+h4=l2mgcdn=1m4+n4=l2
159 158 anbi2d h=n¬2mmgcdh=1m4+h4=l2¬2mmgcdn=1m4+n4=l2
160 simplrl φll<Cmnmgcdn=1m4+n4=l2m
161 160 adantr φll<Cmnmgcdn=1m4+n4=l2¬2mm
162 simprr φll<Cmnn
163 162 ad2antrr φll<Cmnmgcdn=1m4+n4=l2¬2mn
164 simpr φll<Cmnmgcdn=1m4+n4=l2¬2m¬2m
165 simplr φll<Cmnmgcdn=1m4+n4=l2¬2mmgcdn=1m4+n4=l2
166 164 165 jca φll<Cmnmgcdn=1m4+n4=l2¬2m¬2mmgcdn=1m4+n4=l2
167 152 159 161 163 166 2rspcedvdw φll<Cmnmgcdn=1m4+n4=l2¬2mgh¬2gggcdh=1g4+h4=l2
168 simp-4r φll<Cmnmgcdn=1m4+n4=l2¬2ml<C
169 167 168 jca φll<Cmnmgcdn=1m4+n4=l2¬2mgh¬2gggcdh=1g4+h4=l2l<C
170 breq2 g=n2g2n
171 170 notbid g=n¬2g¬2n
172 oveq1 g=nggcdh=ngcdh
173 172 eqeq1d g=nggcdh=1ngcdh=1
174 oveq1 g=ng4=n4
175 174 oveq1d g=ng4+h4=n4+h4
176 175 eqeq1d g=ng4+h4=l2n4+h4=l2
177 173 176 anbi12d g=nggcdh=1g4+h4=l2ngcdh=1n4+h4=l2
178 171 177 anbi12d g=n¬2gggcdh=1g4+h4=l2¬2nngcdh=1n4+h4=l2
179 oveq2 h=mngcdh=ngcdm
180 179 eqeq1d h=mngcdh=1ngcdm=1
181 oveq1 h=mh4=m4
182 181 oveq2d h=mn4+h4=n4+m4
183 182 eqeq1d h=mn4+h4=l2n4+m4=l2
184 180 183 anbi12d h=mngcdh=1n4+h4=l2ngcdm=1n4+m4=l2
185 184 anbi2d h=m¬2nngcdh=1n4+h4=l2¬2nngcdm=1n4+m4=l2
186 162 ad2antrr φll<Cmnmgcdn=1m4+n4=l2¬2nn
187 160 adantr φll<Cmnmgcdn=1m4+n4=l2¬2nm
188 simpr φll<Cmnmgcdn=1m4+n4=l2¬2n¬2n
189 186 nnzd φll<Cmnmgcdn=1m4+n4=l2¬2nn
190 187 nnzd φll<Cmnmgcdn=1m4+n4=l2¬2nm
191 189 190 gcdcomd φll<Cmnmgcdn=1m4+n4=l2¬2nngcdm=mgcdn
192 simplrl φll<Cmnmgcdn=1m4+n4=l2¬2nmgcdn=1
193 191 192 eqtrd φll<Cmnmgcdn=1m4+n4=l2¬2nngcdm=1
194 55 a1i φll<Cmnmgcdn=1m4+n4=l2¬2n40
195 186 194 nnexpcld φll<Cmnmgcdn=1m4+n4=l2¬2nn4
196 195 nncnd φll<Cmnmgcdn=1m4+n4=l2¬2nn4
197 187 194 nnexpcld φll<Cmnmgcdn=1m4+n4=l2¬2nm4
198 197 nncnd φll<Cmnmgcdn=1m4+n4=l2¬2nm4
199 196 198 addcomd φll<Cmnmgcdn=1m4+n4=l2¬2nn4+m4=m4+n4
200 simplrr φll<Cmnmgcdn=1m4+n4=l2¬2nm4+n4=l2
201 199 200 eqtrd φll<Cmnmgcdn=1m4+n4=l2¬2nn4+m4=l2
202 188 193 201 jca32 φll<Cmnmgcdn=1m4+n4=l2¬2n¬2nngcdm=1n4+m4=l2
203 178 185 186 187 202 2rspcedvdw φll<Cmnmgcdn=1m4+n4=l2¬2ngh¬2gggcdh=1g4+h4=l2
204 simp-4r φll<Cmnmgcdn=1m4+n4=l2¬2nl<C
205 203 204 jca φll<Cmnmgcdn=1m4+n4=l2¬2ngh¬2gggcdh=1g4+h4=l2l<C
206 simprl φll<Cmnm
207 206 ad2antrr φll<Cmnmgcdn=1m4+n4=l22mm
208 207 nnsqcld φll<Cmnmgcdn=1m4+n4=l22mm2
209 162 ad2antrr φll<Cmnmgcdn=1m4+n4=l22mn
210 209 nnsqcld φll<Cmnmgcdn=1m4+n4=l22mn2
211 simp-5r φll<Cmnmgcdn=1m4+n4=l22ml
212 160 nnzd φll<Cmnmgcdn=1m4+n4=l2m
213 27 a1i φll<Cmnmgcdn=1m4+n4=l22
214 dvdsexp2im 2m22m2m2
215 62 212 213 214 mp3an2i φll<Cmnmgcdn=1m4+n4=l22m2m2
216 215 imp φll<Cmnmgcdn=1m4+n4=l22m2m2
217 19 a1i φll<Cmnmgcdn=1m4+n4=l22m20
218 207 nncnd φll<Cmnmgcdn=1m4+n4=l22mm
219 218 flt4lem φll<Cmnmgcdn=1m4+n4=l22mm4=m22
220 209 nncnd φll<Cmnmgcdn=1m4+n4=l22mn
221 220 flt4lem φll<Cmnmgcdn=1m4+n4=l22mn4=n22
222 219 221 oveq12d φll<Cmnmgcdn=1m4+n4=l22mm4+n4=m22+n22
223 simplrr φll<Cmnmgcdn=1m4+n4=l22mm4+n4=l2
224 222 223 eqtr3d φll<Cmnmgcdn=1m4+n4=l22mm22+n22=l2
225 simplrl φll<Cmnmgcdn=1m4+n4=l22mmgcdn=1
226 27 a1i φll<Cmnmgcdn=1m4+n4=l22m2
227 rppwr mn2mgcdn=1m2gcdn2=1
228 207 209 226 227 syl3anc φll<Cmnmgcdn=1m4+n4=l22mmgcdn=1m2gcdn2=1
229 225 228 mpd φll<Cmnmgcdn=1m4+n4=l22mm2gcdn2=1
230 208 210 211 217 224 229 fltaccoprm φll<Cmnmgcdn=1m4+n4=l22mm2gcdl=1
231 208 210 211 216 230 224 flt4lem2 φll<Cmnmgcdn=1m4+n4=l22m¬2n2
232 209 nnzd φll<Cmnmgcdn=1m4+n4=l22mn
233 dvdsexp2im 2n22n2n2
234 62 232 226 233 mp3an2i φll<Cmnmgcdn=1m4+n4=l22m2n2n2
235 231 234 mtod φll<Cmnmgcdn=1m4+n4=l22m¬2n
236 235 ex φll<Cmnmgcdn=1m4+n4=l22m¬2n
237 imor 2m¬2n¬2m¬2n
238 236 237 sylib φll<Cmnmgcdn=1m4+n4=l2¬2m¬2n
239 169 205 238 mpjaodan φll<Cmnmgcdn=1m4+n4=l2gh¬2gggcdh=1g4+h4=l2l<C
240 239 ex φll<Cmnmgcdn=1m4+n4=l2gh¬2gggcdh=1g4+h4=l2l<C
241 240 rexlimdvva φll<Cmnmgcdn=1m4+n4=l2gh¬2gggcdh=1g4+h4=l2l<C
242 241 expimpd φll<Cmnmgcdn=1m4+n4=l2gh¬2gggcdh=1g4+h4=l2l<C
243 242 reximdva φll<Cmnmgcdn=1m4+n4=l2lgh¬2gggcdh=1g4+h4=l2l<C
244 143 243 mpd φlgh¬2gggcdh=1g4+h4=l2l<C