Metamath Proof Explorer


Theorem fourierdlem60

Description: Given a differentiable function F , with finite limit of the derivative at A the derived function H has a limit at 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem60.a φ A
fourierdlem60.b φ B
fourierdlem60.altb φ A < B
fourierdlem60.f φ F : A B
fourierdlem60.y φ Y F lim B
fourierdlem60.g G = D F
fourierdlem60.domg φ dom G = A B
fourierdlem60.e φ E G lim B
fourierdlem60.h H = s A B 0 F B + s Y s
fourierdlem60.n N = s A B 0 F B + s Y
fourierdlem60.d D = s A B 0 s
Assertion fourierdlem60 φ E H lim 0

Proof

Step Hyp Ref Expression
1 fourierdlem60.a φ A
2 fourierdlem60.b φ B
3 fourierdlem60.altb φ A < B
4 fourierdlem60.f φ F : A B
5 fourierdlem60.y φ Y F lim B
6 fourierdlem60.g G = D F
7 fourierdlem60.domg φ dom G = A B
8 fourierdlem60.e φ E G lim B
9 fourierdlem60.h H = s A B 0 F B + s Y s
10 fourierdlem60.n N = s A B 0 F B + s Y
11 fourierdlem60.d D = s A B 0 s
12 1 2 resubcld φ A B
13 12 rexrd φ A B *
14 0red φ 0
15 1 2 sublt0d φ A B < 0 A < B
16 3 15 mpbird φ A B < 0
17 4 adantr φ s A B 0 F : A B
18 1 rexrd φ A *
19 18 adantr φ s A B 0 A *
20 2 rexrd φ B *
21 20 adantr φ s A B 0 B *
22 2 adantr φ s A B 0 B
23 elioore s A B 0 s
24 23 adantl φ s A B 0 s
25 22 24 readdcld φ s A B 0 B + s
26 2 recnd φ B
27 1 recnd φ A
28 26 27 pncan3d φ B + A - B = A
29 28 eqcomd φ A = B + A - B
30 29 adantr φ s A B 0 A = B + A - B
31 12 adantr φ s A B 0 A B
32 13 adantr φ s A B 0 A B *
33 0xr 0 *
34 33 a1i φ s A B 0 0 *
35 simpr φ s A B 0 s A B 0
36 32 34 35 ioogtlbd φ s A B 0 A B < s
37 31 24 22 36 ltadd2dd φ s A B 0 B + A - B < B + s
38 30 37 eqbrtrd φ s A B 0 A < B + s
39 0red φ s A B 0 0
40 32 34 35 iooltubd φ s A B 0 s < 0
41 24 39 22 40 ltadd2dd φ s A B 0 B + s < B + 0
42 26 addid1d φ B + 0 = B
43 42 adantr φ s A B 0 B + 0 = B
44 41 43 breqtrd φ s A B 0 B + s < B
45 19 21 25 38 44 eliood φ s A B 0 B + s A B
46 17 45 ffvelrnd φ s A B 0 F B + s
47 ioossre A B
48 47 a1i φ A B
49 ax-resscn
50 48 49 sstrdi φ A B
51 eqid TopOpen fld = TopOpen fld
52 51 18 2 3 lptioo2cn φ B limPt TopOpen fld A B
53 4 50 52 5 limcrecl φ Y
54 53 adantr φ s A B 0 Y
55 46 54 resubcld φ s A B 0 F B + s Y
56 55 10 fmptd φ N : A B 0
57 24 11 fmptd φ D : A B 0
58 10 oveq2i D N = ds A B 0 F B + s Y d s
59 58 a1i φ D N = ds A B 0 F B + s Y d s
60 59 dmeqd φ dom N = dom ds A B 0 F B + s Y d s
61 reelprrecn
62 61 a1i φ
63 46 recnd φ s A B 0 F B + s
64 dvfre F : A B A B F : dom F
65 4 48 64 syl2anc φ F : dom F
66 6 a1i φ G = D F
67 66 feq1d φ G : dom F F : dom F
68 65 67 mpbird φ G : dom F
69 68 adantr φ s A B 0 G : dom F
70 66 eqcomd φ D F = G
71 70 dmeqd φ dom F = dom G
72 71 7 eqtr2d φ A B = dom F
73 72 adantr φ s A B 0 A B = dom F
74 45 73 eleqtrd φ s A B 0 B + s dom F
75 69 74 ffvelrnd φ s A B 0 G B + s
76 1red φ s A B 0 1
77 4 ffvelrnda φ x A B F x
78 77 recnd φ x A B F x
79 72 feq2d φ G : A B G : dom F
80 68 79 mpbird φ G : A B
81 80 ffvelrnda φ x A B G x
82 26 adantr φ s A B 0 B
83 26 adantr φ s B
84 0red φ s 0
85 62 26 dvmptc φ ds B d s = s 0
86 ioossre A B 0
87 86 a1i φ A B 0
88 tgioo4 topGen ran . = TopOpen fld 𝑡
89 iooretop A B 0 topGen ran .
90 89 a1i φ A B 0 topGen ran .
91 62 83 84 85 87 88 51 90 dvmptres φ ds A B 0 B d s = s A B 0 0
92 24 recnd φ s A B 0 s
93 recn s s
94 93 adantl φ s s
95 1red φ s 1
96 62 dvmptid φ ds s d s = s 1
97 62 94 95 96 87 88 51 90 dvmptres φ ds A B 0 s d s = s A B 0 1
98 62 82 39 91 92 76 97 dvmptadd φ ds A B 0 B + s d s = s A B 0 0 + 1
99 0p1e1 0 + 1 = 1
100 99 mpteq2i s A B 0 0 + 1 = s A B 0 1
101 98 100 syl6eq φ ds A B 0 B + s d s = s A B 0 1
102 4 feqmptd φ F = x A B F x
103 102 eqcomd φ x A B F x = F
104 103 oveq2d φ dx A B F x d x = D F
105 80 feqmptd φ G = x A B G x
106 104 70 105 3eqtrd φ dx A B F x d x = x A B G x
107 fveq2 x = B + s F x = F B + s
108 fveq2 x = B + s G x = G B + s
109 62 62 45 76 78 81 101 106 107 108 dvmptco φ ds A B 0 F B + s d s = s A B 0 G B + s 1
110 75 recnd φ s A B 0 G B + s
111 110 mulid1d φ s A B 0 G B + s 1 = G B + s
112 111 mpteq2dva φ s A B 0 G B + s 1 = s A B 0 G B + s
113 109 112 eqtrd φ ds A B 0 F B + s d s = s A B 0 G B + s
114 limccl F lim B
115 114 5 sseldi φ Y
116 115 adantr φ s A B 0 Y
117 115 adantr φ s Y
118 62 115 dvmptc φ ds Y d s = s 0
119 62 117 84 118 87 88 51 90 dvmptres φ ds A B 0 Y d s = s A B 0 0
120 62 63 75 113 116 34 119 dvmptsub φ ds A B 0 F B + s Y d s = s A B 0 G B + s 0
121 110 subid1d φ s A B 0 G B + s 0 = G B + s
122 121 mpteq2dva φ s A B 0 G B + s 0 = s A B 0 G B + s
123 120 122 eqtrd φ ds A B 0 F B + s Y d s = s A B 0 G B + s
124 123 dmeqd φ dom ds A B 0 F B + s Y d s = dom s A B 0 G B + s
125 75 ralrimiva φ s A B 0 G B + s
126 dmmptg s A B 0 G B + s dom s A B 0 G B + s = A B 0
127 125 126 syl φ dom s A B 0 G B + s = A B 0
128 60 124 127 3eqtrd φ dom N = A B 0
129 11 a1i φ D = s A B 0 s
130 129 oveq2d φ D D = ds A B 0 s d s
131 130 97 eqtrd φ D D = s A B 0 1
132 131 dmeqd φ dom D = dom s A B 0 1
133 76 ralrimiva φ s A B 0 1
134 dmmptg s A B 0 1 dom s A B 0 1 = A B 0
135 133 134 syl φ dom s A B 0 1 = A B 0
136 132 135 eqtrd φ dom D = A B 0
137 eqid s A B 0 F B + s = s A B 0 F B + s
138 eqid s A B 0 Y = s A B 0 Y
139 eqid s A B 0 F B + s Y = s A B 0 F B + s Y
140 45 adantrr φ s A B 0 B + s B B + s A B
141 eqid s A B 0 B = s A B 0 B
142 eqid s A B 0 s = s A B 0 s
143 eqid s A B 0 B + s = s A B 0 B + s
144 87 49 sstrdi φ A B 0
145 14 recnd φ 0
146 141 144 26 145 constlimc φ B s A B 0 B lim 0
147 144 142 145 idlimc φ 0 s A B 0 s lim 0
148 141 142 143 82 92 146 147 addlimc φ B + 0 s A B 0 B + s lim 0
149 42 148 eqeltrrd φ B s A B 0 B + s lim 0
150 102 oveq1d φ F lim B = x A B F x lim B
151 5 150 eleqtrd φ Y x A B F x lim B
152 simplrr φ s A B 0 B + s = B ¬ F B + s = Y B + s = B
153 25 44 ltned φ s A B 0 B + s B
154 153 neneqd φ s A B 0 ¬ B + s = B
155 154 adantrr φ s A B 0 B + s = B ¬ B + s = B
156 155 adantr φ s A B 0 B + s = B ¬ F B + s = Y ¬ B + s = B
157 152 156 condan φ s A B 0 B + s = B F B + s = Y
158 140 78 149 151 107 157 limcco φ Y s A B 0 F B + s lim 0
159 138 144 115 145 constlimc φ Y s A B 0 Y lim 0
160 137 138 139 63 116 158 159 sublimc φ Y Y s A B 0 F B + s Y lim 0
161 115 subidd φ Y Y = 0
162 10 eqcomi s A B 0 F B + s Y = N
163 162 oveq1i s A B 0 F B + s Y lim 0 = N lim 0
164 163 a1i φ s A B 0 F B + s Y lim 0 = N lim 0
165 160 161 164 3eltr3d φ 0 N lim 0
166 144 11 145 idlimc φ 0 D lim 0
167 ubioo ¬ 0 A B 0
168 167 a1i φ ¬ 0 A B 0
169 mptresid I A B 0 = s A B 0 s
170 129 169 syl6eqr φ D = I A B 0
171 170 rneqd φ ran D = ran I A B 0
172 rnresi ran I A B 0 = A B 0
173 171 172 syl6req φ A B 0 = ran D
174 168 173 neleqtrd φ ¬ 0 ran D
175 0ne1 0 1
176 175 neii ¬ 0 = 1
177 elsng 0 0 1 0 = 1
178 14 177 syl φ 0 1 0 = 1
179 176 178 mtbiri φ ¬ 0 1
180 131 rneqd φ ran D = ran s A B 0 1
181 eqid s A B 0 1 = s A B 0 1
182 33 a1i φ 0 *
183 ioon0 A B * 0 * A B 0 A B < 0
184 13 182 183 syl2anc φ A B 0 A B < 0
185 16 184 mpbird φ A B 0
186 181 185 rnmptc φ ran s A B 0 1 = 1
187 180 186 eqtr2d φ 1 = ran D
188 179 187 neleqtrd φ ¬ 0 ran D
189 81 recnd φ x A B G x
190 105 oveq1d φ G lim B = x A B G x lim B
191 8 190 eleqtrd φ E x A B G x lim B
192 simplrr φ s A B 0 B + s = B ¬ G B + s = E B + s = B
193 155 adantr φ s A B 0 B + s = B ¬ G B + s = E ¬ B + s = B
194 192 193 condan φ s A B 0 B + s = B G B + s = E
195 140 189 149 191 108 194 limcco φ E s A B 0 G B + s lim 0
196 110 div1d φ s A B 0 G B + s 1 = G B + s
197 58 123 syl5eq φ D N = s A B 0 G B + s
198 197 adantr φ s A B 0 D N = s A B 0 G B + s
199 198 fveq1d φ s A B 0 N s = s A B 0 G B + s s
200 fvmpt4 s A B 0 G B + s s A B 0 G B + s s = G B + s
201 35 75 200 syl2anc φ s A B 0 s A B 0 G B + s s = G B + s
202 199 201 eqtr2d φ s A B 0 G B + s = N s
203 131 fveq1d φ D s = s A B 0 1 s
204 203 adantr φ s A B 0 D s = s A B 0 1 s
205 fvmpt4 s A B 0 1 s A B 0 1 s = 1
206 35 76 205 syl2anc φ s A B 0 s A B 0 1 s = 1
207 204 206 eqtr2d φ s A B 0 1 = D s
208 202 207 oveq12d φ s A B 0 G B + s 1 = N s D s
209 196 208 eqtr3d φ s A B 0 G B + s = N s D s
210 209 mpteq2dva φ s A B 0 G B + s = s A B 0 N s D s
211 210 oveq1d φ s A B 0 G B + s lim 0 = s A B 0 N s D s lim 0
212 195 211 eleqtrd φ E s A B 0 N s D s lim 0
213 13 14 16 56 57 128 136 165 166 174 188 212 lhop2 φ E s A B 0 N s D s lim 0
214 10 fvmpt2 s A B 0 F B + s Y N s = F B + s Y
215 35 55 214 syl2anc φ s A B 0 N s = F B + s Y
216 11 fvmpt2 s A B 0 s A B 0 D s = s
217 35 35 216 syl2anc φ s A B 0 D s = s
218 215 217 oveq12d φ s A B 0 N s D s = F B + s Y s
219 218 mpteq2dva φ s A B 0 N s D s = s A B 0 F B + s Y s
220 219 9 syl6eqr φ s A B 0 N s D s = H
221 220 oveq1d φ s A B 0 N s D s lim 0 = H lim 0
222 213 221 eleqtrd φ E H lim 0