Metamath Proof Explorer


Theorem fourierdlem84

Description: If F is piecewise coninuous and D is continuous, then G is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem84.1 φA
fourierdlem84.2 φB
fourierdlem84.f φF:
fourierdlem84.xre φX
fourierdlem84.p P=mp0m|p0=A+Xpm=B+Xi0..^mpi<pi+1
fourierdlem84.m φM
fourierdlem84.v φVPM
fourierdlem84.fcn φi0..^MFViVi+1:ViVi+1cn
fourierdlem84.r φi0..^MRFViVi+1limVi
fourierdlem84.l φi0..^MLFViVi+1limVi+1
fourierdlem84.q Q=i0MViX
fourierdlem84.o O=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem84.d φD:cn
fourierdlem84.g G=sABFX+sDs
Assertion fourierdlem84 φG𝐿1

Proof

Step Hyp Ref Expression
1 fourierdlem84.1 φA
2 fourierdlem84.2 φB
3 fourierdlem84.f φF:
4 fourierdlem84.xre φX
5 fourierdlem84.p P=mp0m|p0=A+Xpm=B+Xi0..^mpi<pi+1
6 fourierdlem84.m φM
7 fourierdlem84.v φVPM
8 fourierdlem84.fcn φi0..^MFViVi+1:ViVi+1cn
9 fourierdlem84.r φi0..^MRFViVi+1limVi
10 fourierdlem84.l φi0..^MLFViVi+1limVi+1
11 fourierdlem84.q Q=i0MViX
12 fourierdlem84.o O=mp0m|p0=Apm=Bi0..^mpi<pi+1
13 fourierdlem84.d φD:cn
14 fourierdlem84.g G=sABFX+sDs
15 1 2 4 5 12 6 7 11 fourierdlem14 φQOM
16 3 adantr φsABF:
17 4 adantr φsABX
18 1 adantr φsABA
19 2 adantr φsABB
20 simpr φsABsAB
21 eliccre ABsABs
22 18 19 20 21 syl3anc φsABs
23 17 22 readdcld φsABX+s
24 16 23 ffvelcdmd φsABFX+s
25 cncff D:cnD:
26 13 25 syl φD:
27 26 adantr φsABD:
28 27 22 ffvelcdmd φsABDs
29 24 28 remulcld φsABFX+sDs
30 29 recnd φsABFX+sDs
31 30 14 fmptd φG:AB
32 14 a1i φi0..^MG=sABFX+sDs
33 32 reseq1d φi0..^MGQiQi+1=sABFX+sDsQiQi+1
34 ioossicc QiQi+1QiQi+1
35 1 rexrd φA*
36 35 adantr φi0..^MA*
37 2 rexrd φB*
38 37 adantr φi0..^MB*
39 12 6 15 fourierdlem15 φQ:0MAB
40 39 adantr φi0..^MQ:0MAB
41 simpr φi0..^Mi0..^M
42 36 38 40 41 fourierdlem8 φi0..^MQiQi+1AB
43 34 42 sstrid φi0..^MQiQi+1AB
44 43 resmptd φi0..^MsABFX+sDsQiQi+1=sQiQi+1FX+sDs
45 33 44 eqtrd φi0..^MGQiQi+1=sQiQi+1FX+sDs
46 1 4 readdcld φA+X
47 2 4 readdcld φB+X
48 46 47 iccssred φA+XB+X
49 48 adantr φi0..^MA+XB+X
50 5 6 7 fourierdlem15 φV:0MA+XB+X
51 50 adantr φi0..^MV:0MA+XB+X
52 elfzofz i0..^Mi0M
53 52 adantl φi0..^Mi0M
54 51 53 ffvelcdmd φi0..^MViA+XB+X
55 49 54 sseldd φi0..^MVi
56 55 rexrd φi0..^MVi*
57 56 adantr φi0..^MsQiQi+1Vi*
58 fzofzp1 i0..^Mi+10M
59 58 adantl φi0..^Mi+10M
60 51 59 ffvelcdmd φi0..^MVi+1A+XB+X
61 49 60 sseldd φi0..^MVi+1
62 61 rexrd φi0..^MVi+1*
63 62 adantr φi0..^MsQiQi+1Vi+1*
64 4 ad2antrr φi0..^MsQiQi+1X
65 elioore sQiQi+1s
66 65 adantl φi0..^MsQiQi+1s
67 64 66 readdcld φi0..^MsQiQi+1X+s
68 4 recnd φX
69 68 adantr φi0..^MX
70 1 2 iccssred φAB
71 70 adantr φi0..^MAB
72 40 53 ffvelcdmd φi0..^MQiAB
73 71 72 sseldd φi0..^MQi
74 73 recnd φi0..^MQi
75 69 74 addcomd φi0..^MX+Qi=Qi+X
76 4 adantr φi0..^MX
77 55 76 resubcld φi0..^MViX
78 11 fvmpt2 i0MViXQi=ViX
79 53 77 78 syl2anc φi0..^MQi=ViX
80 79 oveq1d φi0..^MQi+X=Vi-X+X
81 55 recnd φi0..^MVi
82 81 69 npcand φi0..^MVi-X+X=Vi
83 75 80 82 3eqtrrd φi0..^MVi=X+Qi
84 83 adantr φi0..^MsQiQi+1Vi=X+Qi
85 73 adantr φi0..^MsQiQi+1Qi
86 73 rexrd φi0..^MQi*
87 86 adantr φi0..^MsQiQi+1Qi*
88 40 71 fssd φi0..^MQ:0M
89 88 59 ffvelcdmd φi0..^MQi+1
90 89 rexrd φi0..^MQi+1*
91 90 adantr φi0..^MsQiQi+1Qi+1*
92 simpr φi0..^MsQiQi+1sQiQi+1
93 ioogtlb Qi*Qi+1*sQiQi+1Qi<s
94 87 91 92 93 syl3anc φi0..^MsQiQi+1Qi<s
95 85 66 64 94 ltadd2dd φi0..^MsQiQi+1X+Qi<X+s
96 84 95 eqbrtrd φi0..^MsQiQi+1Vi<X+s
97 89 adantr φi0..^MsQiQi+1Qi+1
98 iooltub Qi*Qi+1*sQiQi+1s<Qi+1
99 87 91 92 98 syl3anc φi0..^MsQiQi+1s<Qi+1
100 66 97 64 99 ltadd2dd φi0..^MsQiQi+1X+s<X+Qi+1
101 fveq2 i=jVi=Vj
102 101 oveq1d i=jViX=VjX
103 102 cbvmptv i0MViX=j0MVjX
104 11 103 eqtri Q=j0MVjX
105 104 a1i φi0..^MQ=j0MVjX
106 fveq2 j=i+1Vj=Vi+1
107 106 oveq1d j=i+1VjX=Vi+1X
108 107 adantl φi0..^Mj=i+1VjX=Vi+1X
109 61 76 resubcld φi0..^MVi+1X
110 105 108 59 109 fvmptd φi0..^MQi+1=Vi+1X
111 110 oveq2d φi0..^MX+Qi+1=X+Vi+1-X
112 61 recnd φi0..^MVi+1
113 69 112 pncan3d φi0..^MX+Vi+1-X=Vi+1
114 111 113 eqtrd φi0..^MX+Qi+1=Vi+1
115 114 adantr φi0..^MsQiQi+1X+Qi+1=Vi+1
116 100 115 breqtrd φi0..^MsQiQi+1X+s<Vi+1
117 57 63 67 96 116 eliood φi0..^MsQiQi+1X+sViVi+1
118 fvres X+sViVi+1FViVi+1X+s=FX+s
119 117 118 syl φi0..^MsQiQi+1FViVi+1X+s=FX+s
120 119 eqcomd φi0..^MsQiQi+1FX+s=FViVi+1X+s
121 120 mpteq2dva φi0..^MsQiQi+1FX+s=sQiQi+1FViVi+1X+s
122 ioosscn ViVi+1
123 122 a1i φi0..^MViVi+1
124 ioosscn QiQi+1
125 124 a1i φi0..^MQiQi+1
126 123 8 125 69 117 fourierdlem23 φi0..^MsQiQi+1FViVi+1X+s:QiQi+1cn
127 121 126 eqeltrd φi0..^MsQiQi+1FX+s:QiQi+1cn
128 eqid sDs=sDs
129 ax-resscn
130 ssid
131 cncfss cncn
132 129 130 131 mp2an cncn
133 26 feqmptd φD=sDs
134 133 eqcomd φsDs=D
135 134 13 eqeltrd φsDs:cn
136 132 135 sselid φsDs:cn
137 136 adantr φi0..^MsDs:cn
138 43 71 sstrd φi0..^MQiQi+1
139 130 a1i φi0..^M
140 26 adantr φsQiQi+1D:
141 65 adantl φsQiQi+1s
142 140 141 ffvelcdmd φsQiQi+1Ds
143 142 recnd φsQiQi+1Ds
144 143 adantlr φi0..^MsQiQi+1Ds
145 128 137 138 139 144 cncfmptssg φi0..^MsQiQi+1Ds:QiQi+1cn
146 127 145 mulcncf φi0..^MsQiQi+1FX+sDs:QiQi+1cn
147 45 146 eqeltrd φi0..^MGQiQi+1:QiQi+1cn
148 eqid sQiQi+1FX+s=sQiQi+1FX+s
149 eqid sQiQi+1Ds=sQiQi+1Ds
150 eqid sQiQi+1FX+sDs=sQiQi+1FX+sDs
151 3 adantr φsQiQi+1F:
152 4 adantr φsQiQi+1X
153 152 141 readdcld φsQiQi+1X+s
154 151 153 ffvelcdmd φsQiQi+1FX+s
155 154 recnd φsQiQi+1FX+s
156 155 adantlr φi0..^MsQiQi+1FX+s
157 3 adantr φi0..^MF:
158 ioossre ViVi+1
159 158 a1i φi0..^MViVi+1
160 85 94 gtned φi0..^MsQiQi+1sQi
161 83 oveq2d φi0..^MFViVi+1limVi=FViVi+1limX+Qi
162 9 161 eleqtrd φi0..^MRFViVi+1limX+Qi
163 157 76 138 148 117 159 160 162 74 fourierdlem53 φi0..^MRsQiQi+1FX+slimQi
164 limcresi sDslimQisDsQiQi+1limQi
165 132 13 sselid φD:cn
166 165 adantr φi0..^MD:cn
167 166 73 cnlimci φi0..^MDQiDlimQi
168 133 oveq1d φDlimQi=sDslimQi
169 168 adantr φi0..^MDlimQi=sDslimQi
170 167 169 eleqtrd φi0..^MDQisDslimQi
171 164 170 sselid φi0..^MDQisDsQiQi+1limQi
172 138 resmptd φi0..^MsDsQiQi+1=sQiQi+1Ds
173 172 oveq1d φi0..^MsDsQiQi+1limQi=sQiQi+1DslimQi
174 171 173 eleqtrd φi0..^MDQisQiQi+1DslimQi
175 148 149 150 156 144 163 174 mullimc φi0..^MRDQisQiQi+1FX+sDslimQi
176 14 reseq1i GQiQi+1=sABFX+sDsQiQi+1
177 176 44 eqtr2id φi0..^MsQiQi+1FX+sDs=GQiQi+1
178 177 oveq1d φi0..^MsQiQi+1FX+sDslimQi=GQiQi+1limQi
179 175 178 eleqtrd φi0..^MRDQiGQiQi+1limQi
180 66 99 ltned φi0..^MsQiQi+1sQi+1
181 114 eqcomd φi0..^MVi+1=X+Qi+1
182 181 oveq2d φi0..^MFViVi+1limVi+1=FViVi+1limX+Qi+1
183 10 182 eleqtrd φi0..^MLFViVi+1limX+Qi+1
184 89 recnd φi0..^MQi+1
185 157 76 138 148 117 159 180 183 184 fourierdlem53 φi0..^MLsQiQi+1FX+slimQi+1
186 limcresi sDslimQi+1sDsQiQi+1limQi+1
187 166 89 cnlimci φi0..^MDQi+1DlimQi+1
188 133 oveq1d φDlimQi+1=sDslimQi+1
189 188 adantr φi0..^MDlimQi+1=sDslimQi+1
190 187 189 eleqtrd φi0..^MDQi+1sDslimQi+1
191 186 190 sselid φi0..^MDQi+1sDsQiQi+1limQi+1
192 172 oveq1d φi0..^MsDsQiQi+1limQi+1=sQiQi+1DslimQi+1
193 191 192 eleqtrd φi0..^MDQi+1sQiQi+1DslimQi+1
194 148 149 150 156 144 185 193 mullimc φi0..^MLDQi+1sQiQi+1FX+sDslimQi+1
195 177 oveq1d φi0..^MsQiQi+1FX+sDslimQi+1=GQiQi+1limQi+1
196 194 195 eleqtrd φi0..^MLDQi+1GQiQi+1limQi+1
197 12 6 15 31 147 179 196 fourierdlem69 φG𝐿1