| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsum2d.1 |
|
| 2 |
|
fsum2d.2 |
|
| 3 |
|
fsum2d.3 |
|
| 4 |
|
fsum2d.4 |
|
| 5 |
|
fsum2d.5 |
|
| 6 |
|
fsum2d.6 |
|
| 7 |
|
fsum2d.7 |
|
| 8 |
|
simpr |
|
| 9 |
8 7
|
sylib |
|
| 10 |
|
csbeq1a |
|
| 11 |
|
csbeq1a |
|
| 12 |
11
|
adantr |
|
| 13 |
10 12
|
sumeq12dv |
|
| 14 |
|
nfcv |
|
| 15 |
|
nfcsb1v |
|
| 16 |
|
nfcsb1v |
|
| 17 |
15 16
|
nfsum |
|
| 18 |
13 14 17
|
cbvsum |
|
| 19 |
6
|
unssbd |
|
| 20 |
|
vex |
|
| 21 |
20
|
snss |
|
| 22 |
19 21
|
sylibr |
|
| 23 |
3
|
ralrimiva |
|
| 24 |
|
nfcsb1v |
|
| 25 |
24
|
nfel1 |
|
| 26 |
|
csbeq1a |
|
| 27 |
26
|
eleq1d |
|
| 28 |
25 27
|
rspc |
|
| 29 |
22 23 28
|
sylc |
|
| 30 |
4
|
ralrimivva |
|
| 31 |
|
nfcsb1v |
|
| 32 |
31
|
nfel1 |
|
| 33 |
24 32
|
nfralw |
|
| 34 |
|
csbeq1a |
|
| 35 |
34
|
eleq1d |
|
| 36 |
26 35
|
raleqbidv |
|
| 37 |
33 36
|
rspc |
|
| 38 |
22 30 37
|
sylc |
|
| 39 |
38
|
r19.21bi |
|
| 40 |
29 39
|
fsumcl |
|
| 41 |
|
csbeq1 |
|
| 42 |
|
csbeq1 |
|
| 43 |
42
|
adantr |
|
| 44 |
41 43
|
sumeq12dv |
|
| 45 |
44
|
sumsn |
|
| 46 |
22 40 45
|
syl2anc |
|
| 47 |
|
csbeq1a |
|
| 48 |
|
nfcv |
|
| 49 |
|
nfcsb1v |
|
| 50 |
47 48 49
|
cbvsum |
|
| 51 |
|
csbeq1 |
|
| 52 |
|
snfi |
|
| 53 |
|
xpfi |
|
| 54 |
52 29 53
|
sylancr |
|
| 55 |
|
2ndconst |
|
| 56 |
22 55
|
syl |
|
| 57 |
|
fvres |
|
| 58 |
57
|
adantl |
|
| 59 |
49
|
nfel1 |
|
| 60 |
47
|
eleq1d |
|
| 61 |
59 60
|
rspc |
|
| 62 |
38 61
|
mpan9 |
|
| 63 |
51 54 56 58 62
|
fsumf1o |
|
| 64 |
|
elxp |
|
| 65 |
|
nfv |
|
| 66 |
|
nfv |
|
| 67 |
24
|
nfcri |
|
| 68 |
66 67
|
nfan |
|
| 69 |
65 68
|
nfan |
|
| 70 |
69
|
nfex |
|
| 71 |
|
nfv |
|
| 72 |
|
opeq1 |
|
| 73 |
72
|
eqeq2d |
|
| 74 |
|
velsn |
|
| 75 |
74
|
anbi1i |
|
| 76 |
|
eqtr2 |
|
| 77 |
76 26
|
syl |
|
| 78 |
77
|
eleq2d |
|
| 79 |
78
|
pm5.32da |
|
| 80 |
75 79
|
bitr4id |
|
| 81 |
|
equequ1 |
|
| 82 |
81
|
anbi1d |
|
| 83 |
80 82
|
bitrd |
|
| 84 |
73 83
|
anbi12d |
|
| 85 |
84
|
exbidv |
|
| 86 |
70 71 85
|
cbvexv1 |
|
| 87 |
64 86
|
bitri |
|
| 88 |
|
nfv |
|
| 89 |
|
nfcv |
|
| 90 |
89 31
|
nfcsbw |
|
| 91 |
90
|
nfeq2 |
|
| 92 |
|
nfv |
|
| 93 |
|
nfcsb1v |
|
| 94 |
93
|
nfeq2 |
|
| 95 |
1
|
ad2antlr |
|
| 96 |
34
|
ad2antrl |
|
| 97 |
|
fveq2 |
|
| 98 |
|
vex |
|
| 99 |
|
vex |
|
| 100 |
98 99
|
op2nd |
|
| 101 |
97 100
|
eqtr2di |
|
| 102 |
101
|
ad2antlr |
|
| 103 |
|
csbeq1a |
|
| 104 |
102 103
|
syl |
|
| 105 |
95 96 104
|
3eqtrd |
|
| 106 |
105
|
expl |
|
| 107 |
92 94 106
|
exlimd |
|
| 108 |
88 91 107
|
exlimd |
|
| 109 |
87 108
|
biimtrid |
|
| 110 |
109
|
imp |
|
| 111 |
110
|
sumeq2dv |
|
| 112 |
63 111
|
eqtr4d |
|
| 113 |
50 112
|
eqtrid |
|
| 114 |
46 113
|
eqtrd |
|
| 115 |
18 114
|
eqtrid |
|
| 116 |
115
|
adantr |
|
| 117 |
9 116
|
oveq12d |
|
| 118 |
|
disjsn |
|
| 119 |
5 118
|
sylibr |
|
| 120 |
|
eqidd |
|
| 121 |
2 6
|
ssfid |
|
| 122 |
6
|
sselda |
|
| 123 |
4
|
anassrs |
|
| 124 |
3 123
|
fsumcl |
|
| 125 |
122 124
|
syldan |
|
| 126 |
119 120 121 125
|
fsumsplit |
|
| 127 |
126
|
adantr |
|
| 128 |
|
eliun |
|
| 129 |
|
xp1st |
|
| 130 |
|
elsni |
|
| 131 |
129 130
|
syl |
|
| 132 |
131
|
adantl |
|
| 133 |
|
simpl |
|
| 134 |
132 133
|
eqeltrd |
|
| 135 |
134
|
rexlimiva |
|
| 136 |
128 135
|
sylbi |
|
| 137 |
|
xp1st |
|
| 138 |
136 137
|
anim12i |
|
| 139 |
|
elin |
|
| 140 |
|
elin |
|
| 141 |
138 139 140
|
3imtr4i |
|
| 142 |
119
|
eleq2d |
|
| 143 |
|
noel |
|
| 144 |
143
|
pm2.21i |
|
| 145 |
142 144
|
biimtrdi |
|
| 146 |
141 145
|
syl5 |
|
| 147 |
146
|
ssrdv |
|
| 148 |
|
ss0 |
|
| 149 |
147 148
|
syl |
|
| 150 |
|
iunxun |
|
| 151 |
|
nfcv |
|
| 152 |
|
nfcv |
|
| 153 |
152 15
|
nfxp |
|
| 154 |
|
sneq |
|
| 155 |
154 10
|
xpeq12d |
|
| 156 |
151 153 155
|
cbviun |
|
| 157 |
|
sneq |
|
| 158 |
157 41
|
xpeq12d |
|
| 159 |
20 158
|
iunxsn |
|
| 160 |
156 159
|
eqtri |
|
| 161 |
160
|
uneq2i |
|
| 162 |
150 161
|
eqtri |
|
| 163 |
162
|
a1i |
|
| 164 |
|
snfi |
|
| 165 |
122 3
|
syldan |
|
| 166 |
|
xpfi |
|
| 167 |
164 165 166
|
sylancr |
|
| 168 |
167
|
ralrimiva |
|
| 169 |
|
iunfi |
|
| 170 |
121 168 169
|
syl2anc |
|
| 171 |
|
eliun |
|
| 172 |
|
elxp |
|
| 173 |
|
simprl |
|
| 174 |
|
simprrl |
|
| 175 |
|
elsni |
|
| 176 |
174 175
|
syl |
|
| 177 |
176
|
opeq1d |
|
| 178 |
173 177
|
eqtrd |
|
| 179 |
178 1
|
syl |
|
| 180 |
|
simpll |
|
| 181 |
122
|
adantr |
|
| 182 |
|
simprrr |
|
| 183 |
180 181 182 4
|
syl12anc |
|
| 184 |
179 183
|
eqeltrd |
|
| 185 |
184
|
ex |
|
| 186 |
185
|
exlimdvv |
|
| 187 |
172 186
|
biimtrid |
|
| 188 |
187
|
rexlimdva |
|
| 189 |
171 188
|
biimtrid |
|
| 190 |
189
|
imp |
|
| 191 |
149 163 170 190
|
fsumsplit |
|
| 192 |
191
|
adantr |
|
| 193 |
117 127 192
|
3eqtr4d |
|