Metamath Proof Explorer


Theorem fsum2dlem

Description: Lemma for fsum2d - induction step. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fsum2d.1 z=jkD=C
fsum2d.2 φAFin
fsum2d.3 φjABFin
fsum2d.4 φjAkBC
fsum2d.5 φ¬yx
fsum2d.6 φxyA
fsum2d.7 ψjxkBC=zjxj×BD
Assertion fsum2dlem φψjxykBC=zjxyj×BD

Proof

Step Hyp Ref Expression
1 fsum2d.1 z=jkD=C
2 fsum2d.2 φAFin
3 fsum2d.3 φjABFin
4 fsum2d.4 φjAkBC
5 fsum2d.5 φ¬yx
6 fsum2d.6 φxyA
7 fsum2d.7 ψjxkBC=zjxj×BD
8 simpr φψψ
9 8 7 sylib φψjxkBC=zjxj×BD
10 nfcv _mkBC
11 nfcsb1v _jm/jB
12 nfcsb1v _jm/jC
13 11 12 nfsum _jkm/jBm/jC
14 csbeq1a j=mB=m/jB
15 csbeq1a j=mC=m/jC
16 15 adantr j=mkBC=m/jC
17 14 16 sumeq12dv j=mkBC=km/jBm/jC
18 10 13 17 cbvsumi jykBC=mykm/jBm/jC
19 6 unssbd φyA
20 vex yV
21 20 snss yAyA
22 19 21 sylibr φyA
23 3 ralrimiva φjABFin
24 nfcsb1v _jy/jB
25 24 nfel1 jy/jBFin
26 csbeq1a j=yB=y/jB
27 26 eleq1d j=yBFiny/jBFin
28 25 27 rspc yAjABFiny/jBFin
29 22 23 28 sylc φy/jBFin
30 4 ralrimivva φjAkBC
31 nfcsb1v _jy/jC
32 31 nfel1 jy/jC
33 24 32 nfralw jky/jBy/jC
34 csbeq1a j=yC=y/jC
35 34 eleq1d j=yCy/jC
36 26 35 raleqbidv j=ykBCky/jBy/jC
37 33 36 rspc yAjAkBCky/jBy/jC
38 22 30 37 sylc φky/jBy/jC
39 38 r19.21bi φky/jBy/jC
40 29 39 fsumcl φky/jBy/jC
41 csbeq1 m=ym/jB=y/jB
42 csbeq1 m=ym/jC=y/jC
43 42 adantr m=ykm/jBm/jC=y/jC
44 41 43 sumeq12dv m=ykm/jBm/jC=ky/jBy/jC
45 44 sumsn yAky/jBy/jCmykm/jBm/jC=ky/jBy/jC
46 22 40 45 syl2anc φmykm/jBm/jC=ky/jBy/jC
47 nfcv _my/jC
48 nfcsb1v _km/ky/jC
49 csbeq1a k=my/jC=m/ky/jC
50 47 48 49 cbvsumi ky/jBy/jC=my/jBm/ky/jC
51 csbeq1 m=2ndzm/ky/jC=2ndz/ky/jC
52 snfi yFin
53 xpfi yFiny/jBFiny×y/jBFin
54 52 29 53 sylancr φy×y/jBFin
55 2ndconst yA2ndy×y/jB:y×y/jB1-1 ontoy/jB
56 22 55 syl φ2ndy×y/jB:y×y/jB1-1 ontoy/jB
57 fvres zy×y/jB2ndy×y/jBz=2ndz
58 57 adantl φzy×y/jB2ndy×y/jBz=2ndz
59 48 nfel1 km/ky/jC
60 49 eleq1d k=my/jCm/ky/jC
61 59 60 rspc my/jBky/jBy/jCm/ky/jC
62 38 61 mpan9 φmy/jBm/ky/jC
63 51 54 56 58 62 fsumf1o φmy/jBm/ky/jC=zy×y/jB2ndz/ky/jC
64 elxp zy×y/jBmkz=mkmyky/jB
65 nfv jz=mk
66 nfv jmy
67 24 nfcri jky/jB
68 66 67 nfan jmyky/jB
69 65 68 nfan jz=mkmyky/jB
70 69 nfex jkz=mkmyky/jB
71 nfv mkz=jkj=ykB
72 opeq1 m=jmk=jk
73 72 eqeq2d m=jz=mkz=jk
74 velsn mym=y
75 74 anbi1i myky/jBm=yky/jB
76 eqtr2 m=jm=yj=y
77 76 26 syl m=jm=yB=y/jB
78 77 eleq2d m=jm=ykBky/jB
79 78 pm5.32da m=jm=ykBm=yky/jB
80 75 79 bitr4id m=jmyky/jBm=ykB
81 equequ1 m=jm=yj=y
82 81 anbi1d m=jm=ykBj=ykB
83 80 82 bitrd m=jmyky/jBj=ykB
84 73 83 anbi12d m=jz=mkmyky/jBz=jkj=ykB
85 84 exbidv m=jkz=mkmyky/jBkz=jkj=ykB
86 70 71 85 cbvexv1 mkz=mkmyky/jBjkz=jkj=ykB
87 64 86 bitri zy×y/jBjkz=jkj=ykB
88 nfv jφ
89 nfcv _j2ndz
90 89 31 nfcsbw _j2ndz/ky/jC
91 90 nfeq2 jD=2ndz/ky/jC
92 nfv kφ
93 nfcsb1v _k2ndz/ky/jC
94 93 nfeq2 kD=2ndz/ky/jC
95 1 ad2antlr φz=jkj=ykBD=C
96 34 ad2antrl φz=jkj=ykBC=y/jC
97 fveq2 z=jk2ndz=2ndjk
98 vex jV
99 vex kV
100 98 99 op2nd 2ndjk=k
101 97 100 eqtr2di z=jkk=2ndz
102 101 ad2antlr φz=jkj=ykBk=2ndz
103 csbeq1a k=2ndzy/jC=2ndz/ky/jC
104 102 103 syl φz=jkj=ykBy/jC=2ndz/ky/jC
105 95 96 104 3eqtrd φz=jkj=ykBD=2ndz/ky/jC
106 105 expl φz=jkj=ykBD=2ndz/ky/jC
107 92 94 106 exlimd φkz=jkj=ykBD=2ndz/ky/jC
108 88 91 107 exlimd φjkz=jkj=ykBD=2ndz/ky/jC
109 87 108 biimtrid φzy×y/jBD=2ndz/ky/jC
110 109 imp φzy×y/jBD=2ndz/ky/jC
111 110 sumeq2dv φzy×y/jBD=zy×y/jB2ndz/ky/jC
112 63 111 eqtr4d φmy/jBm/ky/jC=zy×y/jBD
113 50 112 eqtrid φky/jBy/jC=zy×y/jBD
114 46 113 eqtrd φmykm/jBm/jC=zy×y/jBD
115 18 114 eqtrid φjykBC=zy×y/jBD
116 115 adantr φψjykBC=zy×y/jBD
117 9 116 oveq12d φψjxkBC+jykBC=zjxj×BD+zy×y/jBD
118 disjsn xy=¬yx
119 5 118 sylibr φxy=
120 eqidd φxy=xy
121 2 6 ssfid φxyFin
122 6 sselda φjxyjA
123 4 anassrs φjAkBC
124 3 123 fsumcl φjAkBC
125 122 124 syldan φjxykBC
126 119 120 121 125 fsumsplit φjxykBC=jxkBC+jykBC
127 126 adantr φψjxykBC=jxkBC+jykBC
128 eliun zjxj×Bjxzj×B
129 xp1st zj×B1stzj
130 elsni 1stzj1stz=j
131 129 130 syl zj×B1stz=j
132 131 adantl jxzj×B1stz=j
133 simpl jxzj×Bjx
134 132 133 eqeltrd jxzj×B1stzx
135 134 rexlimiva jxzj×B1stzx
136 128 135 sylbi zjxj×B1stzx
137 xp1st zy×y/jB1stzy
138 136 137 anim12i zjxj×Bzy×y/jB1stzx1stzy
139 elin zjxj×By×y/jBzjxj×Bzy×y/jB
140 elin 1stzxy1stzx1stzy
141 138 139 140 3imtr4i zjxj×By×y/jB1stzxy
142 119 eleq2d φ1stzxy1stz
143 noel ¬1stz
144 143 pm2.21i 1stzz
145 142 144 syl6bi φ1stzxyz
146 141 145 syl5 φzjxj×By×y/jBz
147 146 ssrdv φjxj×By×y/jB
148 ss0 jxj×By×y/jBjxj×By×y/jB=
149 147 148 syl φjxj×By×y/jB=
150 iunxun jxyj×B=jxj×Bjyj×B
151 nfcv _mj×B
152 nfcv _jm
153 152 11 nfxp _jm×m/jB
154 sneq j=mj=m
155 154 14 xpeq12d j=mj×B=m×m/jB
156 151 153 155 cbviun jyj×B=mym×m/jB
157 sneq m=ym=y
158 157 41 xpeq12d m=ym×m/jB=y×y/jB
159 20 158 iunxsn mym×m/jB=y×y/jB
160 156 159 eqtri jyj×B=y×y/jB
161 160 uneq2i jxj×Bjyj×B=jxj×By×y/jB
162 150 161 eqtri jxyj×B=jxj×By×y/jB
163 162 a1i φjxyj×B=jxj×By×y/jB
164 snfi jFin
165 122 3 syldan φjxyBFin
166 xpfi jFinBFinj×BFin
167 164 165 166 sylancr φjxyj×BFin
168 167 ralrimiva φjxyj×BFin
169 iunfi xyFinjxyj×BFinjxyj×BFin
170 121 168 169 syl2anc φjxyj×BFin
171 eliun zjxyj×Bjxyzj×B
172 elxp zj×Bmkz=mkmjkB
173 simprl φjxyz=mkmjkBz=mk
174 simprrl φjxyz=mkmjkBmj
175 elsni mjm=j
176 174 175 syl φjxyz=mkmjkBm=j
177 176 opeq1d φjxyz=mkmjkBmk=jk
178 173 177 eqtrd φjxyz=mkmjkBz=jk
179 178 1 syl φjxyz=mkmjkBD=C
180 simpll φjxyz=mkmjkBφ
181 122 adantr φjxyz=mkmjkBjA
182 simprrr φjxyz=mkmjkBkB
183 180 181 182 4 syl12anc φjxyz=mkmjkBC
184 179 183 eqeltrd φjxyz=mkmjkBD
185 184 ex φjxyz=mkmjkBD
186 185 exlimdvv φjxymkz=mkmjkBD
187 172 186 biimtrid φjxyzj×BD
188 187 rexlimdva φjxyzj×BD
189 171 188 biimtrid φzjxyj×BD
190 189 imp φzjxyj×BD
191 149 163 170 190 fsumsplit φzjxyj×BD=zjxj×BD+zy×y/jBD
192 191 adantr φψzjxyj×BD=zjxj×BD+zy×y/jBD
193 117 127 192 3eqtr4d φψjxykBC=zjxyj×BD