Metamath Proof Explorer


Theorem fwddifnp1

Description: The value of the n-iterated forward difference at a successor. (Contributed by Scott Fenton, 28-May-2020)

Ref Expression
Hypotheses fwddifnp1.1 φN0
fwddifnp1.2 φA
fwddifnp1.3 φF:A
fwddifnp1.4 φX
fwddifnp1.5 φk0N+1X+kA
Assertion fwddifnp1 φN+1nFX=NnFX+1NnFX

Proof

Step Hyp Ref Expression
1 fwddifnp1.1 φN0
2 fwddifnp1.2 φA
3 fwddifnp1.3 φF:A
4 fwddifnp1.4 φX
5 fwddifnp1.5 φk0N+1X+kA
6 elfzelz k0N+1k
7 bcpasc N0k(Nk)+(Nk1)=(N+1k)
8 1 6 7 syl2an φk0N+1(Nk)+(Nk1)=(N+1k)
9 8 oveq1d φk0N+1(Nk)+(Nk1)1N+1-kFX+k=(N+1k)1N+1-kFX+k
10 bccl N0k(Nk)0
11 1 6 10 syl2an φk0N+1(Nk)0
12 11 nn0cnd φk0N+1(Nk)
13 peano2zm kk1
14 6 13 syl k0N+1k1
15 bccl N0k1(Nk1)0
16 1 14 15 syl2an φk0N+1(Nk1)0
17 16 nn0cnd φk0N+1(Nk1)
18 12 17 addcomd φk0N+1(Nk)+(Nk1)=(Nk1)+(Nk)
19 18 oveq1d φk0N+1(Nk)+(Nk1)1N+1-kFX+k=(Nk1)+(Nk)1N+1-kFX+k
20 peano2nn0 N0N+10
21 1 20 syl φN+10
22 21 nn0zd φN+1
23 zsubcl N+1kN+1-k
24 22 6 23 syl2an φk0N+1N+1-k
25 m1expcl N+1-k1N+1-k
26 24 25 syl φk0N+11N+1-k
27 26 zcnd φk0N+11N+1-k
28 3 adantr φk0N+1F:A
29 28 5 ffvelcdmd φk0N+1FX+k
30 27 29 mulcld φk0N+11N+1-kFX+k
31 17 12 30 adddird φk0N+1(Nk1)+(Nk)1N+1-kFX+k=(Nk1)1N+1-kFX+k+(Nk)1N+1-kFX+k
32 19 31 eqtrd φk0N+1(Nk)+(Nk1)1N+1-kFX+k=(Nk1)1N+1-kFX+k+(Nk)1N+1-kFX+k
33 1 adantr φk0N+1N0
34 33 nn0cnd φk0N+1N
35 6 adantl φk0N+1k
36 35 zcnd φk0N+1k
37 1cnd φk0N+11
38 34 36 37 subsub3d φk0N+1Nk1=N+1-k
39 38 eqcomd φk0N+1N+1-k=Nk1
40 39 oveq2d φk0N+11N+1-k=1Nk1
41 40 oveq1d φk0N+11N+1-kFX+k=1Nk1FX+k
42 41 oveq2d φk0N+1(Nk1)1N+1-kFX+k=(Nk1)1Nk1FX+k
43 34 37 36 addsubd φk0N+1N+1-k=N-k+1
44 43 oveq2d φk0N+11N+1-k=1N-k+1
45 neg1cn 1
46 45 a1i φk0N+11
47 neg1ne0 10
48 47 a1i φk0N+110
49 1 nn0zd φN
50 zsubcl NkNk
51 49 6 50 syl2an φk0N+1Nk
52 46 48 51 expp1zd φk0N+11N-k+1=1Nk-1
53 44 52 eqtrd φk0N+11N+1-k=1Nk-1
54 m1expcl Nk1Nk
55 51 54 syl φk0N+11Nk
56 55 zcnd φk0N+11Nk
57 56 46 mulcomd φk0N+11Nk-1=-11Nk
58 56 mulm1d φk0N+1-11Nk=1Nk
59 53 57 58 3eqtrd φk0N+11N+1-k=1Nk
60 59 oveq1d φk0N+11N+1-kFX+k=1NkFX+k
61 56 29 mulneg1d φk0N+11NkFX+k=1NkFX+k
62 60 61 eqtrd φk0N+11N+1-kFX+k=1NkFX+k
63 62 oveq2d φk0N+1(Nk)1N+1-kFX+k=(Nk)1NkFX+k
64 56 29 mulcld φk0N+11NkFX+k
65 12 64 mulneg2d φk0N+1(Nk)1NkFX+k=(Nk)1NkFX+k
66 63 65 eqtrd φk0N+1(Nk)1N+1-kFX+k=(Nk)1NkFX+k
67 42 66 oveq12d φk0N+1(Nk1)1N+1-kFX+k+(Nk)1N+1-kFX+k=(Nk1)1Nk1FX+k+(Nk)1NkFX+k
68 zsubcl Nk1Nk1
69 49 14 68 syl2an φk0N+1Nk1
70 m1expcl Nk11Nk1
71 69 70 syl φk0N+11Nk1
72 71 zcnd φk0N+11Nk1
73 72 29 mulcld φk0N+11Nk1FX+k
74 17 73 mulcld φk0N+1(Nk1)1Nk1FX+k
75 12 64 mulcld φk0N+1(Nk)1NkFX+k
76 74 75 negsubd φk0N+1(Nk1)1Nk1FX+k+(Nk)1NkFX+k=(Nk1)1Nk1FX+k(Nk)1NkFX+k
77 32 67 76 3eqtrd φk0N+1(Nk)+(Nk1)1N+1-kFX+k=(Nk1)1Nk1FX+k(Nk)1NkFX+k
78 9 77 eqtr3d φk0N+1(N+1k)1N+1-kFX+k=(Nk1)1Nk1FX+k(Nk)1NkFX+k
79 78 sumeq2dv φk=0N+1(N+1k)1N+1-kFX+k=k=0N+1(Nk1)1Nk1FX+k(Nk)1NkFX+k
80 fzfid φ0N+1Fin
81 80 74 75 fsumsub φk=0N+1(Nk1)1Nk1FX+k(Nk)1NkFX+k=k=0N+1(Nk1)1Nk1FX+kk=0N+1(Nk)1NkFX+k
82 nn0uz 0=0
83 21 82 eleqtrdi φN+10
84 oveq1 k=0k1=01
85 84 oveq2d k=0(Nk1)=(N01)
86 84 oveq2d k=0Nk1=N01
87 86 oveq2d k=01Nk1=1N01
88 oveq2 k=0X+k=X+0
89 88 fveq2d k=0FX+k=FX+0
90 87 89 oveq12d k=01Nk1FX+k=1N01FX+0
91 85 90 oveq12d k=0(Nk1)1Nk1FX+k=(N01)1N01FX+0
92 83 74 91 fsum1p φk=0N+1(Nk1)1Nk1FX+k=(N01)1N01FX+0+k=0+1N+1(Nk1)1Nk1FX+k
93 df-neg 1=01
94 93 oveq2i (N1)=(N01)
95 bcneg1 N0(N1)=0
96 1 95 syl φ(N1)=0
97 94 96 eqtr3id φ(N01)=0
98 97 oveq1d φ(N01)1N01FX+0=01N01FX+0
99 0z 0
100 1z 1
101 zsubcl 0101
102 99 100 101 mp2an 01
103 102 a1i φ01
104 49 103 zsubcld φN01
105 m1expcl N011N01
106 104 105 syl φ1N01
107 106 zcnd φ1N01
108 eluzfz1 N+1000N+1
109 83 108 syl φ00N+1
110 5 ralrimiva φk0N+1X+kA
111 88 eleq1d k=0X+kAX+0A
112 111 rspcva 00N+1k0N+1X+kAX+0A
113 109 110 112 syl2anc φX+0A
114 3 113 ffvelcdmd φFX+0
115 107 114 mulcld φ1N01FX+0
116 115 mul02d φ01N01FX+0=0
117 98 116 eqtrd φ(N01)1N01FX+0=0
118 117 oveq1d φ(N01)1N01FX+0+k=0+1N+1(Nk1)1Nk1FX+k=0+k=0+1N+1(Nk1)1Nk1FX+k
119 fzfid φ0+1N+1Fin
120 olc k0+1N+1k=0k0+1N+1
121 elfzp12 N+10k0N+1k=0k0+1N+1
122 83 121 syl φk0N+1k=0k0+1N+1
123 122 biimpar φk=0k0+1N+1k0N+1
124 120 123 sylan2 φk0+1N+1k0N+1
125 124 74 syldan φk0+1N+1(Nk1)1Nk1FX+k
126 119 125 fsumcl φk=0+1N+1(Nk1)1Nk1FX+k
127 126 addlidd φ0+k=0+1N+1(Nk1)1Nk1FX+k=k=0+1N+1(Nk1)1Nk1FX+k
128 92 118 127 3eqtrd φk=0N+1(Nk1)1Nk1FX+k=k=0+1N+1(Nk1)1Nk1FX+k
129 4 adantr φk0+1N+1X
130 1cnd φk0+1N+11
131 elfzelz k0+1N+1k
132 131 zcnd k0+1N+1k
133 132 adantl φk0+1N+1k
134 129 130 133 ppncand φk0+1N+1X+1+k1=X+k
135 134 fveq2d φk0+1N+1FX+1+k1=FX+k
136 135 oveq2d φk0+1N+11Nk1FX+1+k1=1Nk1FX+k
137 136 oveq2d φk0+1N+1(Nk1)1Nk1FX+1+k1=(Nk1)1Nk1FX+k
138 137 sumeq2dv φk=0+1N+1(Nk1)1Nk1FX+1+k1=k=0+1N+1(Nk1)1Nk1FX+k
139 1zzd φ1
140 0zd φ0
141 elfzelz j0Nj
142 bccl N0j(Nj)0
143 142 nn0cnd N0j(Nj)
144 1 141 143 syl2an φj0N(Nj)
145 zsubcl NjNj
146 49 141 145 syl2an φj0NNj
147 m1expcl Nj1Nj
148 146 147 syl φj0N1Nj
149 148 zcnd φj0N1Nj
150 3 adantr φj0NF:A
151 4 adantr φj0NX
152 1cnd φj0N1
153 141 zcnd j0Nj
154 153 adantl φj0Nj
155 151 152 154 addassd φj0NX+1+j=X+1+j
156 152 154 addcomd φj0N1+j=j+1
157 156 oveq2d φj0NX+1+j=X+j+1
158 155 157 eqtrd φj0NX+1+j=X+j+1
159 fzp1elp1 j0Nj+10N+1
160 oveq2 k=j+1X+k=X+j+1
161 160 eleq1d k=j+1X+kAX+j+1A
162 161 rspccv k0N+1X+kAj+10N+1X+j+1A
163 110 162 syl φj+10N+1X+j+1A
164 163 imp φj+10N+1X+j+1A
165 159 164 sylan2 φj0NX+j+1A
166 158 165 eqeltrd φj0NX+1+jA
167 150 166 ffvelcdmd φj0NFX+1+j
168 149 167 mulcld φj0N1NjFX+1+j
169 144 168 mulcld φj0N(Nj)1NjFX+1+j
170 oveq2 j=k1(Nj)=(Nk1)
171 oveq2 j=k1Nj=Nk1
172 171 oveq2d j=k11Nj=1Nk1
173 oveq2 j=k1X+1+j=X+1+k1
174 173 fveq2d j=k1FX+1+j=FX+1+k1
175 172 174 oveq12d j=k11NjFX+1+j=1Nk1FX+1+k1
176 170 175 oveq12d j=k1(Nj)1NjFX+1+j=(Nk1)1Nk1FX+1+k1
177 139 140 49 169 176 fsumshft φj=0N(Nj)1NjFX+1+j=k=0+1N+1(Nk1)1Nk1FX+1+k1
178 oveq2 j=k(Nj)=(Nk)
179 oveq2 j=kNj=Nk
180 179 oveq2d j=k1Nj=1Nk
181 oveq2 j=kX+1+j=X+1+k
182 181 fveq2d j=kFX+1+j=FX+1+k
183 180 182 oveq12d j=k1NjFX+1+j=1NkFX+1+k
184 178 183 oveq12d j=k(Nj)1NjFX+1+j=(Nk)1NkFX+1+k
185 184 cbvsumv j=0N(Nj)1NjFX+1+j=k=0N(Nk)1NkFX+1+k
186 177 185 eqtr3di φk=0+1N+1(Nk1)1Nk1FX+1+k1=k=0N(Nk)1NkFX+1+k
187 128 138 186 3eqtr2d φk=0N+1(Nk1)1Nk1FX+k=k=0N(Nk)1NkFX+1+k
188 1 82 eleqtrdi φN0
189 oveq2 k=N+1(Nk)=(NN+1)
190 oveq2 k=N+1Nk=NN+1
191 190 oveq2d k=N+11Nk=1NN+1
192 oveq2 k=N+1X+k=X+N+1
193 192 fveq2d k=N+1FX+k=FX+N+1
194 191 193 oveq12d k=N+11NkFX+k=1NN+1FX+N+1
195 189 194 oveq12d k=N+1(Nk)1NkFX+k=(NN+1)1NN+1FX+N+1
196 188 75 195 fsump1 φk=0N+1(Nk)1NkFX+k=k=0N(Nk)1NkFX+k+(NN+1)1NN+1FX+N+1
197 bcval N0N+1(NN+1)=ifN+10NN!NN+1!N+1!0
198 1 22 197 syl2anc φ(NN+1)=ifN+10NN!NN+1!N+1!0
199 fzp1nel ¬N+10N
200 199 iffalsei ifN+10NN!NN+1!N+1!0=0
201 198 200 eqtrdi φ(NN+1)=0
202 201 oveq1d φ(NN+1)1NN+1FX+N+1=01NN+1FX+N+1
203 49 22 zsubcld φNN+1
204 m1expcl NN+11NN+1
205 204 zcnd NN+11NN+1
206 203 205 syl φ1NN+1
207 eluzfz2 N+10N+10N+1
208 83 207 syl φN+10N+1
209 192 eleq1d k=N+1X+kAX+N+1A
210 209 rspcv N+10N+1k0N+1X+kAX+N+1A
211 208 110 210 sylc φX+N+1A
212 3 211 ffvelcdmd φFX+N+1
213 206 212 mulcld φ1NN+1FX+N+1
214 213 mul02d φ01NN+1FX+N+1=0
215 202 214 eqtrd φ(NN+1)1NN+1FX+N+1=0
216 215 oveq2d φk=0N(Nk)1NkFX+k+(NN+1)1NN+1FX+N+1=k=0N(Nk)1NkFX+k+0
217 fzfid φ0NFin
218 fzelp1 k0Nk0N+1
219 218 75 sylan2 φk0N(Nk)1NkFX+k
220 217 219 fsumcl φk=0N(Nk)1NkFX+k
221 220 addridd φk=0N(Nk)1NkFX+k+0=k=0N(Nk)1NkFX+k
222 196 216 221 3eqtrd φk=0N+1(Nk)1NkFX+k=k=0N(Nk)1NkFX+k
223 187 222 oveq12d φk=0N+1(Nk1)1Nk1FX+kk=0N+1(Nk)1NkFX+k=k=0N(Nk)1NkFX+1+kk=0N(Nk)1NkFX+k
224 79 81 223 3eqtrd φk=0N+1(N+1k)1N+1-kFX+k=k=0N(Nk)1NkFX+1+kk=0N(Nk)1NkFX+k
225 21 2 3 4 5 fwddifnval φN+1nFX=k=0N+1(N+1k)1N+1-kFX+k
226 peano2cn XX+1
227 4 226 syl φX+1
228 4 adantr φk0NX
229 1cnd φk0N1
230 elfzelz k0Nk
231 230 zcnd k0Nk
232 231 adantl φk0Nk
233 228 229 232 addassd φk0NX+1+k=X+1+k
234 229 232 addcomd φk0N1+k=k+1
235 234 oveq2d φk0NX+1+k=X+k+1
236 233 235 eqtrd φk0NX+1+k=X+k+1
237 fzp1elp1 k0Nk+10N+1
238 oveq1 j=kj+1=k+1
239 238 eleq1d j=kj+10N+1k+10N+1
240 239 anbi2d j=kφj+10N+1φk+10N+1
241 238 oveq2d j=kX+j+1=X+k+1
242 241 eleq1d j=kX+j+1AX+k+1A
243 240 242 imbi12d j=kφj+10N+1X+j+1Aφk+10N+1X+k+1A
244 243 164 chvarvv φk+10N+1X+k+1A
245 237 244 sylan2 φk0NX+k+1A
246 236 245 eqeltrd φk0NX+1+kA
247 1 2 3 227 246 fwddifnval φNnFX+1=k=0N(Nk)1NkFX+1+k
248 218 5 sylan2 φk0NX+kA
249 1 2 3 4 248 fwddifnval φNnFX=k=0N(Nk)1NkFX+k
250 247 249 oveq12d φNnFX+1NnFX=k=0N(Nk)1NkFX+1+kk=0N(Nk)1NkFX+k
251 224 225 250 3eqtr4d φN+1nFX=NnFX+1NnFX