Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|
2 |
|
gausslemma2d.h |
|
3 |
|
gausslemma2d.r |
|
4 |
|
gausslemma2d.m |
|
5 |
1 2 3
|
gausslemma2dlem1 |
|
6 |
|
eldif |
|
7 |
|
prm23ge5 |
|
8 |
|
eleq1 |
|
9 |
8
|
notbid |
|
10 |
|
2ex |
|
11 |
10
|
snid |
|
12 |
11
|
2a1i |
|
13 |
12
|
necon1bd |
|
14 |
13
|
a1dd |
|
15 |
9 14
|
sylbid |
|
16 |
|
3lt4 |
|
17 |
|
breq1 |
|
18 |
16 17
|
mpbiri |
|
19 |
|
3nn0 |
|
20 |
|
eleq1 |
|
21 |
19 20
|
mpbiri |
|
22 |
|
4nn |
|
23 |
|
divfl0 |
|
24 |
21 22 23
|
sylancl |
|
25 |
18 24
|
mpbid |
|
26 |
4 25
|
eqtrid |
|
27 |
|
oveq2 |
|
28 |
27
|
adantr |
|
29 |
|
fz10 |
|
30 |
28 29
|
eqtrdi |
|
31 |
30
|
prodeq1d |
|
32 |
|
prod0 |
|
33 |
31 32
|
eqtrdi |
|
34 |
|
oveq1 |
|
35 |
34
|
adantr |
|
36 |
|
0p1e1 |
|
37 |
35 36
|
eqtrdi |
|
38 |
37
|
oveq1d |
|
39 |
38
|
prodeq1d |
|
40 |
33 39
|
oveq12d |
|
41 |
|
fzfid |
|
42 |
|
oveq1 |
|
43 |
42
|
breq1d |
|
44 |
42
|
oveq2d |
|
45 |
43 42 44
|
ifbieq12d |
|
46 |
|
simpr |
|
47 |
|
elfzelz |
|
48 |
47
|
zcnd |
|
49 |
|
2cnd |
|
50 |
48 49
|
mulcld |
|
51 |
50
|
adantl |
|
52 |
|
eldifi |
|
53 |
|
prmz |
|
54 |
53
|
zcnd |
|
55 |
1 52 54
|
3syl |
|
56 |
55
|
adantr |
|
57 |
56 51
|
subcld |
|
58 |
51 57
|
ifcld |
|
59 |
3 45 46 58
|
fvmptd3 |
|
60 |
59 58
|
eqeltrd |
|
61 |
60
|
adantll |
|
62 |
41 61
|
fprodcl |
|
63 |
62
|
mulid2d |
|
64 |
40 63
|
eqtr2d |
|
65 |
64
|
ex |
|
66 |
26 65
|
syl |
|
67 |
66
|
a1d |
|
68 |
1 4
|
gausslemma2dlem0d |
|
69 |
68
|
nn0red |
|
70 |
69
|
ltp1d |
|
71 |
|
fzdisj |
|
72 |
70 71
|
syl |
|
73 |
72
|
adantl |
|
74 |
|
eluzelre |
|
75 |
|
4re |
|
76 |
75
|
a1i |
|
77 |
|
4ne0 |
|
78 |
77
|
a1i |
|
79 |
74 76 78
|
redivcld |
|
80 |
79
|
flcld |
|
81 |
|
nnrp |
|
82 |
22 81
|
ax-mp |
|
83 |
|
eluz2 |
|
84 |
|
4lt5 |
|
85 |
|
5re |
|
86 |
85
|
a1i |
|
87 |
|
zre |
|
88 |
87
|
adantl |
|
89 |
|
ltleletr |
|
90 |
75 86 88 89
|
mp3an2i |
|
91 |
84 90
|
mpani |
|
92 |
91
|
3impia |
|
93 |
83 92
|
sylbi |
|
94 |
|
divge1 |
|
95 |
82 74 93 94
|
mp3an2i |
|
96 |
|
1zzd |
|
97 |
|
flge |
|
98 |
79 96 97
|
syl2anc |
|
99 |
95 98
|
mpbid |
|
100 |
|
elnnz1 |
|
101 |
80 99 100
|
sylanbrc |
|
102 |
101
|
adantl |
|
103 |
|
oddprm |
|
104 |
103
|
adantr |
|
105 |
|
prmuz2 |
|
106 |
52 105
|
syl |
|
107 |
106
|
adantr |
|
108 |
|
fldiv4lem1div2uz2 |
|
109 |
107 108
|
syl |
|
110 |
102 104 109
|
3jca |
|
111 |
110
|
ex |
|
112 |
1 111
|
syl |
|
113 |
112
|
impcom |
|
114 |
2
|
oveq2i |
|
115 |
4 114
|
eleq12i |
|
116 |
|
elfz1b |
|
117 |
115 116
|
bitri |
|
118 |
113 117
|
sylibr |
|
119 |
|
fzsplit |
|
120 |
118 119
|
syl |
|
121 |
|
fzfid |
|
122 |
60
|
adantll |
|
123 |
73 120 121 122
|
fprodsplit |
|
124 |
123
|
ex |
|
125 |
124
|
a1d |
|
126 |
15 67 125
|
3jaoi |
|
127 |
7 126
|
syl |
|
128 |
127
|
imp |
|
129 |
6 128
|
sylbi |
|
130 |
1 129
|
mpcom |
|
131 |
5 130
|
eqtrd |
|