Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
hashbclem
Next ⟩
hashbc
Metamath Proof Explorer
Ascii
Unicode
Theorem
hashbclem
Description:
Lemma for
hashbc
: inductive step.
(Contributed by
Mario Carneiro
, 13-Jul-2014)
Ref
Expression
Hypotheses
hashbc.1
⊢
φ
→
A
∈
Fin
hashbc.2
⊢
φ
→
¬
z
∈
A
hashbc.3
⊢
φ
→
∀
j
∈
ℤ
(
A
j
)
=
x
∈
𝒫
A
|
x
=
j
hashbc.4
⊢
φ
→
K
∈
ℤ
Assertion
hashbclem
⊢
φ
→
(
A
∪
z
K
)
=
x
∈
𝒫
A
∪
z
|
x
=
K
Proof
Step
Hyp
Ref
Expression
1
hashbc.1
⊢
φ
→
A
∈
Fin
2
hashbc.2
⊢
φ
→
¬
z
∈
A
3
hashbc.3
⊢
φ
→
∀
j
∈
ℤ
(
A
j
)
=
x
∈
𝒫
A
|
x
=
j
4
hashbc.4
⊢
φ
→
K
∈
ℤ
5
oveq2
⊢
j
=
K
→
(
A
j
)
=
(
A
K
)
6
eqeq2
⊢
j
=
K
→
x
=
j
↔
x
=
K
7
6
rabbidv
⊢
j
=
K
→
x
∈
𝒫
A
|
x
=
j
=
x
∈
𝒫
A
|
x
=
K
8
7
fveq2d
⊢
j
=
K
→
x
∈
𝒫
A
|
x
=
j
=
x
∈
𝒫
A
|
x
=
K
9
5
8
eqeq12d
⊢
j
=
K
→
(
A
j
)
=
x
∈
𝒫
A
|
x
=
j
↔
(
A
K
)
=
x
∈
𝒫
A
|
x
=
K
10
9
3
4
rspcdva
⊢
φ
→
(
A
K
)
=
x
∈
𝒫
A
|
x
=
K
11
ssun1
⊢
A
⊆
A
∪
z
12
11
sspwi
⊢
𝒫
A
⊆
𝒫
A
∪
z
13
12
sseli
⊢
x
∈
𝒫
A
→
x
∈
𝒫
A
∪
z
14
13
adantl
⊢
φ
∧
x
∈
𝒫
A
→
x
∈
𝒫
A
∪
z
15
elpwi
⊢
x
∈
𝒫
A
→
x
⊆
A
16
15
ssneld
⊢
x
∈
𝒫
A
→
¬
z
∈
A
→
¬
z
∈
x
17
2
16
mpan9
⊢
φ
∧
x
∈
𝒫
A
→
¬
z
∈
x
18
14
17
jca
⊢
φ
∧
x
∈
𝒫
A
→
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
19
elpwi
⊢
x
∈
𝒫
A
∪
z
→
x
⊆
A
∪
z
20
uncom
⊢
A
∪
z
=
z
∪
A
21
19
20
sseqtrdi
⊢
x
∈
𝒫
A
∪
z
→
x
⊆
z
∪
A
22
21
adantr
⊢
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
→
x
⊆
z
∪
A
23
simpr
⊢
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
→
¬
z
∈
x
24
disjsn
⊢
x
∩
z
=
∅
↔
¬
z
∈
x
25
23
24
sylibr
⊢
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
→
x
∩
z
=
∅
26
disjssun
⊢
x
∩
z
=
∅
→
x
⊆
z
∪
A
↔
x
⊆
A
27
25
26
syl
⊢
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
→
x
⊆
z
∪
A
↔
x
⊆
A
28
22
27
mpbid
⊢
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
→
x
⊆
A
29
vex
⊢
x
∈
V
30
29
elpw
⊢
x
∈
𝒫
A
↔
x
⊆
A
31
28
30
sylibr
⊢
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
→
x
∈
𝒫
A
32
31
adantl
⊢
φ
∧
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
→
x
∈
𝒫
A
33
18
32
impbida
⊢
φ
→
x
∈
𝒫
A
↔
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
34
33
anbi1d
⊢
φ
→
x
∈
𝒫
A
∧
x
=
K
↔
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
∧
x
=
K
35
anass
⊢
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
∧
x
=
K
↔
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
∧
x
=
K
36
34
35
bitrdi
⊢
φ
→
x
∈
𝒫
A
∧
x
=
K
↔
x
∈
𝒫
A
∪
z
∧
¬
z
∈
x
∧
x
=
K
37
36
rabbidva2
⊢
φ
→
x
∈
𝒫
A
|
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
38
37
fveq2d
⊢
φ
→
x
∈
𝒫
A
|
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
39
10
38
eqtrd
⊢
φ
→
(
A
K
)
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
40
oveq2
⊢
j
=
K
−
1
→
(
A
j
)
=
(
A
K
−
1
)
41
eqeq2
⊢
j
=
K
−
1
→
x
=
j
↔
x
=
K
−
1
42
41
rabbidv
⊢
j
=
K
−
1
→
x
∈
𝒫
A
|
x
=
j
=
x
∈
𝒫
A
|
x
=
K
−
1
43
42
fveq2d
⊢
j
=
K
−
1
→
x
∈
𝒫
A
|
x
=
j
=
x
∈
𝒫
A
|
x
=
K
−
1
44
40
43
eqeq12d
⊢
j
=
K
−
1
→
(
A
j
)
=
x
∈
𝒫
A
|
x
=
j
↔
(
A
K
−
1
)
=
x
∈
𝒫
A
|
x
=
K
−
1
45
peano2zm
⊢
K
∈
ℤ
→
K
−
1
∈
ℤ
46
4
45
syl
⊢
φ
→
K
−
1
∈
ℤ
47
44
3
46
rspcdva
⊢
φ
→
(
A
K
−
1
)
=
x
∈
𝒫
A
|
x
=
K
−
1
48
pwfi
⊢
A
∈
Fin
↔
𝒫
A
∈
Fin
49
1
48
sylib
⊢
φ
→
𝒫
A
∈
Fin
50
rabexg
⊢
𝒫
A
∈
Fin
→
x
∈
𝒫
A
|
x
=
K
−
1
∈
V
51
49
50
syl
⊢
φ
→
x
∈
𝒫
A
|
x
=
K
−
1
∈
V
52
snfi
⊢
z
∈
Fin
53
unfi
⊢
A
∈
Fin
∧
z
∈
Fin
→
A
∪
z
∈
Fin
54
1
52
53
sylancl
⊢
φ
→
A
∪
z
∈
Fin
55
pwfi
⊢
A
∪
z
∈
Fin
↔
𝒫
A
∪
z
∈
Fin
56
54
55
sylib
⊢
φ
→
𝒫
A
∪
z
∈
Fin
57
ssrab2
⊢
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
⊆
𝒫
A
∪
z
58
ssfi
⊢
𝒫
A
∪
z
∈
Fin
∧
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
⊆
𝒫
A
∪
z
→
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
∈
Fin
59
56
57
58
sylancl
⊢
φ
→
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
∈
Fin
60
fveqeq2
⊢
x
=
u
→
x
=
K
−
1
↔
u
=
K
−
1
61
60
elrab
⊢
u
∈
x
∈
𝒫
A
|
x
=
K
−
1
↔
u
∈
𝒫
A
∧
u
=
K
−
1
62
eleq2
⊢
x
=
u
∪
z
→
z
∈
x
↔
z
∈
u
∪
z
63
fveqeq2
⊢
x
=
u
∪
z
→
x
=
K
↔
u
∪
z
=
K
64
62
63
anbi12d
⊢
x
=
u
∪
z
→
z
∈
x
∧
x
=
K
↔
z
∈
u
∪
z
∧
u
∪
z
=
K
65
elpwi
⊢
u
∈
𝒫
A
→
u
⊆
A
66
65
ad2antrl
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
⊆
A
67
unss1
⊢
u
⊆
A
→
u
∪
z
⊆
A
∪
z
68
66
67
syl
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
∪
z
⊆
A
∪
z
69
vex
⊢
u
∈
V
70
vsnex
⊢
z
∈
V
71
69
70
unex
⊢
u
∪
z
∈
V
72
71
elpw
⊢
u
∪
z
∈
𝒫
A
∪
z
↔
u
∪
z
⊆
A
∪
z
73
68
72
sylibr
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
∪
z
∈
𝒫
A
∪
z
74
1
adantr
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
A
∈
Fin
75
74
66
ssfid
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
∈
Fin
76
52
a1i
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
z
∈
Fin
77
2
adantr
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
¬
z
∈
A
78
66
77
ssneldd
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
¬
z
∈
u
79
disjsn
⊢
u
∩
z
=
∅
↔
¬
z
∈
u
80
78
79
sylibr
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
∩
z
=
∅
81
hashun
⊢
u
∈
Fin
∧
z
∈
Fin
∧
u
∩
z
=
∅
→
u
∪
z
=
u
+
z
82
75
76
80
81
syl3anc
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
∪
z
=
u
+
z
83
simprr
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
=
K
−
1
84
hashsng
⊢
z
∈
V
→
z
=
1
85
84
elv
⊢
z
=
1
86
85
a1i
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
z
=
1
87
83
86
oveq12d
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
+
z
=
K
-
1
+
1
88
4
adantr
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
K
∈
ℤ
89
88
zcnd
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
K
∈
ℂ
90
ax-1cn
⊢
1
∈
ℂ
91
npcan
⊢
K
∈
ℂ
∧
1
∈
ℂ
→
K
-
1
+
1
=
K
92
89
90
91
sylancl
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
K
-
1
+
1
=
K
93
82
87
92
3eqtrd
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
∪
z
=
K
94
ssun2
⊢
z
⊆
u
∪
z
95
vex
⊢
z
∈
V
96
95
snss
⊢
z
∈
u
∪
z
↔
z
⊆
u
∪
z
97
94
96
mpbir
⊢
z
∈
u
∪
z
98
93
97
jctil
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
z
∈
u
∪
z
∧
u
∪
z
=
K
99
64
73
98
elrabd
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
∪
z
∈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
100
99
ex
⊢
φ
→
u
∈
𝒫
A
∧
u
=
K
−
1
→
u
∪
z
∈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
101
61
100
biimtrid
⊢
φ
→
u
∈
x
∈
𝒫
A
|
x
=
K
−
1
→
u
∪
z
∈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
102
eleq2
⊢
x
=
v
→
z
∈
x
↔
z
∈
v
103
fveqeq2
⊢
x
=
v
→
x
=
K
↔
v
=
K
104
102
103
anbi12d
⊢
x
=
v
→
z
∈
x
∧
x
=
K
↔
z
∈
v
∧
v
=
K
105
104
elrab
⊢
v
∈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
↔
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
106
fveqeq2
⊢
x
=
v
∖
z
→
x
=
K
−
1
↔
v
∖
z
=
K
−
1
107
elpwi
⊢
v
∈
𝒫
A
∪
z
→
v
⊆
A
∪
z
108
107
ad2antrl
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
⊆
A
∪
z
109
108
20
sseqtrdi
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
⊆
z
∪
A
110
ssundif
⊢
v
⊆
z
∪
A
↔
v
∖
z
⊆
A
111
109
110
sylib
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
⊆
A
112
vex
⊢
v
∈
V
113
112
difexi
⊢
v
∖
z
∈
V
114
113
elpw
⊢
v
∖
z
∈
𝒫
A
↔
v
∖
z
⊆
A
115
111
114
sylibr
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∈
𝒫
A
116
1
adantr
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
A
∈
Fin
117
116
111
ssfid
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∈
Fin
118
hashcl
⊢
v
∖
z
∈
Fin
→
v
∖
z
∈
ℕ
0
119
117
118
syl
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∈
ℕ
0
120
119
nn0cnd
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∈
ℂ
121
pncan
⊢
v
∖
z
∈
ℂ
∧
1
∈
ℂ
→
v
∖
z
+
1
-
1
=
v
∖
z
122
120
90
121
sylancl
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
+
1
-
1
=
v
∖
z
123
undif1
⊢
v
∖
z
∪
z
=
v
∪
z
124
simprrl
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
z
∈
v
125
124
snssd
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
z
⊆
v
126
ssequn2
⊢
z
⊆
v
↔
v
∪
z
=
v
127
125
126
sylib
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∪
z
=
v
128
123
127
eqtrid
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∪
z
=
v
129
128
fveq2d
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∪
z
=
v
130
52
a1i
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
z
∈
Fin
131
disjdifr
⊢
v
∖
z
∩
z
=
∅
132
131
a1i
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∩
z
=
∅
133
hashun
⊢
v
∖
z
∈
Fin
∧
z
∈
Fin
∧
v
∖
z
∩
z
=
∅
→
v
∖
z
∪
z
=
v
∖
z
+
z
134
117
130
132
133
syl3anc
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∪
z
=
v
∖
z
+
z
135
85
oveq2i
⊢
v
∖
z
+
z
=
v
∖
z
+
1
136
134
135
eqtrdi
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∪
z
=
v
∖
z
+
1
137
simprrr
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
=
K
138
129
136
137
3eqtr3d
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
+
1
=
K
139
138
oveq1d
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
+
1
-
1
=
K
−
1
140
122
139
eqtr3d
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
=
K
−
1
141
106
115
140
elrabd
⊢
φ
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∈
x
∈
𝒫
A
|
x
=
K
−
1
142
141
ex
⊢
φ
→
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
∈
x
∈
𝒫
A
|
x
=
K
−
1
143
105
142
biimtrid
⊢
φ
→
v
∈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
→
v
∖
z
∈
x
∈
𝒫
A
|
x
=
K
−
1
144
61
105
anbi12i
⊢
u
∈
x
∈
𝒫
A
|
x
=
K
−
1
∧
v
∈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
↔
u
∈
𝒫
A
∧
u
=
K
−
1
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
145
simp3rl
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
z
∈
v
146
145
snssd
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
z
⊆
v
147
incom
⊢
z
∩
u
=
u
∩
z
148
80
3adant3
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
u
∩
z
=
∅
149
147
148
eqtrid
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
z
∩
u
=
∅
150
uneqdifeq
⊢
z
⊆
v
∧
z
∩
u
=
∅
→
z
∪
u
=
v
↔
v
∖
z
=
u
151
146
149
150
syl2anc
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
z
∪
u
=
v
↔
v
∖
z
=
u
152
151
bicomd
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
v
∖
z
=
u
↔
z
∪
u
=
v
153
eqcom
⊢
u
=
v
∖
z
↔
v
∖
z
=
u
154
eqcom
⊢
v
=
u
∪
z
↔
u
∪
z
=
v
155
uncom
⊢
u
∪
z
=
z
∪
u
156
155
eqeq1i
⊢
u
∪
z
=
v
↔
z
∪
u
=
v
157
154
156
bitri
⊢
v
=
u
∪
z
↔
z
∪
u
=
v
158
152
153
157
3bitr4g
⊢
φ
∧
u
∈
𝒫
A
∧
u
=
K
−
1
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
u
=
v
∖
z
↔
v
=
u
∪
z
159
158
3expib
⊢
φ
→
u
∈
𝒫
A
∧
u
=
K
−
1
∧
v
∈
𝒫
A
∪
z
∧
z
∈
v
∧
v
=
K
→
u
=
v
∖
z
↔
v
=
u
∪
z
160
144
159
biimtrid
⊢
φ
→
u
∈
x
∈
𝒫
A
|
x
=
K
−
1
∧
v
∈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
→
u
=
v
∖
z
↔
v
=
u
∪
z
161
51
59
101
143
160
en3d
⊢
φ
→
x
∈
𝒫
A
|
x
=
K
−
1
≈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
162
ssrab2
⊢
x
∈
𝒫
A
|
x
=
K
−
1
⊆
𝒫
A
163
ssfi
⊢
𝒫
A
∈
Fin
∧
x
∈
𝒫
A
|
x
=
K
−
1
⊆
𝒫
A
→
x
∈
𝒫
A
|
x
=
K
−
1
∈
Fin
164
49
162
163
sylancl
⊢
φ
→
x
∈
𝒫
A
|
x
=
K
−
1
∈
Fin
165
hashen
⊢
x
∈
𝒫
A
|
x
=
K
−
1
∈
Fin
∧
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
∈
Fin
→
x
∈
𝒫
A
|
x
=
K
−
1
=
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
↔
x
∈
𝒫
A
|
x
=
K
−
1
≈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
166
164
59
165
syl2anc
⊢
φ
→
x
∈
𝒫
A
|
x
=
K
−
1
=
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
↔
x
∈
𝒫
A
|
x
=
K
−
1
≈
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
167
161
166
mpbird
⊢
φ
→
x
∈
𝒫
A
|
x
=
K
−
1
=
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
168
47
167
eqtrd
⊢
φ
→
(
A
K
−
1
)
=
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
169
39
168
oveq12d
⊢
φ
→
(
A
K
)
+
(
A
K
−
1
)
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
+
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
170
52
a1i
⊢
φ
→
z
∈
Fin
171
disjsn
⊢
A
∩
z
=
∅
↔
¬
z
∈
A
172
2
171
sylibr
⊢
φ
→
A
∩
z
=
∅
173
hashun
⊢
A
∈
Fin
∧
z
∈
Fin
∧
A
∩
z
=
∅
→
A
∪
z
=
A
+
z
174
1
170
172
173
syl3anc
⊢
φ
→
A
∪
z
=
A
+
z
175
85
oveq2i
⊢
A
+
z
=
A
+
1
176
174
175
eqtrdi
⊢
φ
→
A
∪
z
=
A
+
1
177
176
oveq1d
⊢
φ
→
(
A
∪
z
K
)
=
(
A
+
1
K
)
178
hashcl
⊢
A
∈
Fin
→
A
∈
ℕ
0
179
1
178
syl
⊢
φ
→
A
∈
ℕ
0
180
bcpasc
⊢
A
∈
ℕ
0
∧
K
∈
ℤ
→
(
A
K
)
+
(
A
K
−
1
)
=
(
A
+
1
K
)
181
179
4
180
syl2anc
⊢
φ
→
(
A
K
)
+
(
A
K
−
1
)
=
(
A
+
1
K
)
182
177
181
eqtr4d
⊢
φ
→
(
A
∪
z
K
)
=
(
A
K
)
+
(
A
K
−
1
)
183
pm2.1
⊢
¬
z
∈
x
∨
z
∈
x
184
183
biantrur
⊢
x
=
K
↔
¬
z
∈
x
∨
z
∈
x
∧
x
=
K
185
andir
⊢
¬
z
∈
x
∨
z
∈
x
∧
x
=
K
↔
¬
z
∈
x
∧
x
=
K
∨
z
∈
x
∧
x
=
K
186
184
185
bitri
⊢
x
=
K
↔
¬
z
∈
x
∧
x
=
K
∨
z
∈
x
∧
x
=
K
187
186
rabbii
⊢
x
∈
𝒫
A
∪
z
|
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∨
z
∈
x
∧
x
=
K
188
unrab
⊢
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∪
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∨
z
∈
x
∧
x
=
K
189
187
188
eqtr4i
⊢
x
∈
𝒫
A
∪
z
|
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∪
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
190
189
fveq2i
⊢
x
∈
𝒫
A
∪
z
|
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∪
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
191
ssrab2
⊢
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
⊆
𝒫
A
∪
z
192
ssfi
⊢
𝒫
A
∪
z
∈
Fin
∧
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
⊆
𝒫
A
∪
z
→
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∈
Fin
193
56
191
192
sylancl
⊢
φ
→
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∈
Fin
194
inrab
⊢
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∩
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∧
z
∈
x
∧
x
=
K
195
simprl
⊢
¬
z
∈
x
∧
x
=
K
∧
z
∈
x
∧
x
=
K
→
z
∈
x
196
simpll
⊢
¬
z
∈
x
∧
x
=
K
∧
z
∈
x
∧
x
=
K
→
¬
z
∈
x
197
195
196
pm2.65i
⊢
¬
¬
z
∈
x
∧
x
=
K
∧
z
∈
x
∧
x
=
K
198
197
rgenw
⊢
∀
x
∈
𝒫
A
∪
z
¬
¬
z
∈
x
∧
x
=
K
∧
z
∈
x
∧
x
=
K
199
rabeq0
⊢
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∧
z
∈
x
∧
x
=
K
=
∅
↔
∀
x
∈
𝒫
A
∪
z
¬
¬
z
∈
x
∧
x
=
K
∧
z
∈
x
∧
x
=
K
200
198
199
mpbir
⊢
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∧
z
∈
x
∧
x
=
K
=
∅
201
194
200
eqtri
⊢
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∩
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
=
∅
202
201
a1i
⊢
φ
→
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∩
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
=
∅
203
hashun
⊢
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∈
Fin
∧
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
∈
Fin
∧
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∩
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
=
∅
→
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∪
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
+
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
204
193
59
202
203
syl3anc
⊢
φ
→
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
∪
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
+
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
205
190
204
eqtrid
⊢
φ
→
x
∈
𝒫
A
∪
z
|
x
=
K
=
x
∈
𝒫
A
∪
z
|
¬
z
∈
x
∧
x
=
K
+
x
∈
𝒫
A
∪
z
|
z
∈
x
∧
x
=
K
206
169
182
205
3eqtr4d
⊢
φ
→
(
A
∪
z
K
)
=
x
∈
𝒫
A
∪
z
|
x
=
K