Metamath Proof Explorer


Theorem itgfsum

Description: Take a finite sum of integrals over the same domain. (Contributed by Mario Carneiro, 24-Aug-2014)

Ref Expression
Hypotheses itgfsum.1 φAdomvol
itgfsum.2 φBFin
itgfsum.3 φxAkBCV
itgfsum.4 φkBxAC𝐿1
Assertion itgfsum φxAkBC𝐿1AkBCdx=kBACdx

Proof

Step Hyp Ref Expression
1 itgfsum.1 φAdomvol
2 itgfsum.2 φBFin
3 itgfsum.3 φxAkBCV
4 itgfsum.4 φkBxAC𝐿1
5 ssid BB
6 sseq1 t=tBB
7 itgz A0dx=0
8 sumeq1 t=ktC=kC
9 sum0 kC=0
10 8 9 eqtrdi t=ktC=0
11 10 adantr t=xAktC=0
12 11 itgeq2dv t=AktCdx=A0dx
13 sumeq1 t=ktACdx=kACdx
14 sum0 kACdx=0
15 13 14 eqtrdi t=ktACdx=0
16 7 12 15 3eqtr4a t=AktCdx=ktACdx
17 10 mpteq2dv t=xAktC=xA0
18 fconstmpt A×0=xA0
19 17 18 eqtr4di t=xAktC=A×0
20 19 eleq1d t=xAktC𝐿1A×0𝐿1
21 20 anbi1d t=xAktC𝐿1AktCdx=ktACdxA×0𝐿1AktCdx=ktACdx
22 16 21 mpbiran2d t=xAktC𝐿1AktCdx=ktACdxA×0𝐿1
23 6 22 imbi12d t=tBxAktC𝐿1AktCdx=ktACdxBA×0𝐿1
24 23 imbi2d t=φtBxAktC𝐿1AktCdx=ktACdxφBA×0𝐿1
25 sseq1 t=wtBwB
26 sumeq1 t=wktC=kwC
27 26 mpteq2dv t=wxAktC=xAkwC
28 27 eleq1d t=wxAktC𝐿1xAkwC𝐿1
29 26 adantr t=wxAktC=kwC
30 29 itgeq2dv t=wAktCdx=AkwCdx
31 sumeq1 t=wktACdx=kwACdx
32 30 31 eqeq12d t=wAktCdx=ktACdxAkwCdx=kwACdx
33 28 32 anbi12d t=wxAktC𝐿1AktCdx=ktACdxxAkwC𝐿1AkwCdx=kwACdx
34 25 33 imbi12d t=wtBxAktC𝐿1AktCdx=ktACdxwBxAkwC𝐿1AkwCdx=kwACdx
35 34 imbi2d t=wφtBxAktC𝐿1AktCdx=ktACdxφwBxAkwC𝐿1AkwCdx=kwACdx
36 sseq1 t=wztBwzB
37 sumeq1 t=wzktC=kwzC
38 37 mpteq2dv t=wzxAktC=xAkwzC
39 38 eleq1d t=wzxAktC𝐿1xAkwzC𝐿1
40 37 adantr t=wzxAktC=kwzC
41 40 itgeq2dv t=wzAktCdx=AkwzCdx
42 sumeq1 t=wzktACdx=kwzACdx
43 41 42 eqeq12d t=wzAktCdx=ktACdxAkwzCdx=kwzACdx
44 39 43 anbi12d t=wzxAktC𝐿1AktCdx=ktACdxxAkwzC𝐿1AkwzCdx=kwzACdx
45 36 44 imbi12d t=wztBxAktC𝐿1AktCdx=ktACdxwzBxAkwzC𝐿1AkwzCdx=kwzACdx
46 45 imbi2d t=wzφtBxAktC𝐿1AktCdx=ktACdxφwzBxAkwzC𝐿1AkwzCdx=kwzACdx
47 sseq1 t=BtBBB
48 sumeq1 t=BktC=kBC
49 48 mpteq2dv t=BxAktC=xAkBC
50 49 eleq1d t=BxAktC𝐿1xAkBC𝐿1
51 48 adantr t=BxAktC=kBC
52 51 itgeq2dv t=BAktCdx=AkBCdx
53 sumeq1 t=BktACdx=kBACdx
54 52 53 eqeq12d t=BAktCdx=ktACdxAkBCdx=kBACdx
55 50 54 anbi12d t=BxAktC𝐿1AktCdx=ktACdxxAkBC𝐿1AkBCdx=kBACdx
56 47 55 imbi12d t=BtBxAktC𝐿1AktCdx=ktACdxBBxAkBC𝐿1AkBCdx=kBACdx
57 56 imbi2d t=BφtBxAktC𝐿1AktCdx=ktACdxφBBxAkBC𝐿1AkBCdx=kBACdx
58 ibl0 AdomvolA×0𝐿1
59 1 58 syl φA×0𝐿1
60 59 a1d φBA×0𝐿1
61 ssun1 wwz
62 sstr wwzwzBwB
63 61 62 mpan wzBwB
64 63 imim1i wBxAkwC𝐿1AkwCdx=kwACdxwzBxAkwC𝐿1AkwCdx=kwACdx
65 nfcv _mC
66 nfcsb1v _km/kC
67 csbeq1a k=mC=m/kC
68 65 66 67 cbvsumi kwzC=mwzm/kC
69 simprl φ¬zwwzB¬zw
70 disjsn wz=¬zw
71 69 70 sylibr φ¬zwwzBwz=
72 71 adantr φ¬zwwzBxAwz=
73 eqidd φ¬zwwzBxAwz=wz
74 2 adantr φ¬zwwzBBFin
75 simprr φ¬zwwzBwzB
76 74 75 ssfid φ¬zwwzBwzFin
77 76 adantr φ¬zwwzBxAwzFin
78 simplrr φ¬zwwzBxAwzB
79 78 sselda φ¬zwwzBxAmwzmB
80 iblmbf xAC𝐿1xACMblFn
81 4 80 syl φkBxACMblFn
82 3 anass1rs φkBxACV
83 81 82 mbfmptcl φkBxAC
84 83 an32s φxAkBC
85 84 ralrimiva φxAkBC
86 85 adantlr φ¬zwwzBxAkBC
87 65 nfel1 mC
88 66 nfel1 km/kC
89 67 eleq1d k=mCm/kC
90 87 88 89 cbvralw kBCmBm/kC
91 86 90 sylib φ¬zwwzBxAmBm/kC
92 91 r19.21bi φ¬zwwzBxAmBm/kC
93 79 92 syldan φ¬zwwzBxAmwzm/kC
94 72 73 77 93 fsumsplit φ¬zwwzBxAmwzm/kC=mwm/kC+mzm/kC
95 vex zV
96 csbeq1 m=zm/kC=z/kC
97 96 eleq1d m=zm/kCz/kC
98 75 unssbd φ¬zwwzBzB
99 95 snss zBzB
100 98 99 sylibr φ¬zwwzBzB
101 100 adantr φ¬zwwzBxAzB
102 97 91 101 rspcdva φ¬zwwzBxAz/kC
103 96 sumsn zVz/kCmzm/kC=z/kC
104 95 102 103 sylancr φ¬zwwzBxAmzm/kC=z/kC
105 104 oveq2d φ¬zwwzBxAmwm/kC+mzm/kC=mwm/kC+z/kC
106 94 105 eqtrd φ¬zwwzBxAmwzm/kC=mwm/kC+z/kC
107 68 106 eqtrid φ¬zwwzBxAkwzC=mwm/kC+z/kC
108 107 mpteq2dva φ¬zwwzBxAkwzC=xAmwm/kC+z/kC
109 nfcv _ymwm/kC+z/kC
110 nfcsb1v _xy/xmwm/kC
111 nfcv _x+
112 nfcsb1v _xy/xz/kC
113 110 111 112 nfov _xy/xmwm/kC+y/xz/kC
114 csbeq1a x=ymwm/kC=y/xmwm/kC
115 csbeq1a x=yz/kC=y/xz/kC
116 114 115 oveq12d x=ymwm/kC+z/kC=y/xmwm/kC+y/xz/kC
117 109 113 116 cbvmpt xAmwm/kC+z/kC=yAy/xmwm/kC+y/xz/kC
118 108 117 eqtrdi φ¬zwwzBxAkwzC=yAy/xmwm/kC+y/xz/kC
119 118 adantr φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxxAkwzC=yAy/xmwm/kC+y/xz/kC
120 sumex mwm/kCV
121 120 csbex y/xmwm/kCV
122 121 a1i φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxyAy/xmwm/kCV
123 65 66 67 cbvsumi kwC=mwm/kC
124 123 mpteq2i xAkwC=xAmwm/kC
125 nfcv _ymwm/kC
126 125 110 114 cbvmpt xAmwm/kC=yAy/xmwm/kC
127 124 126 eqtri xAkwC=yAy/xmwm/kC
128 simprl φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxxAkwC𝐿1
129 127 128 eqeltrrid φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxyAy/xmwm/kC𝐿1
130 102 elexd φ¬zwwzBxAz/kCV
131 130 ralrimiva φ¬zwwzBxAz/kCV
132 131 adantr φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxxAz/kCV
133 nfv yz/kCV
134 112 nfel1 xy/xz/kCV
135 115 eleq1d x=yz/kCVy/xz/kCV
136 133 134 135 cbvralw xAz/kCVyAy/xz/kCV
137 132 136 sylib φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxyAy/xz/kCV
138 137 r19.21bi φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxyAy/xz/kCV
139 nfcv _yz/kC
140 139 112 115 cbvmpt xAz/kC=yAy/xz/kC
141 96 mpteq2dv m=zxAm/kC=xAz/kC
142 141 eleq1d m=zxAm/kC𝐿1xAz/kC𝐿1
143 4 ralrimiva φkBxAC𝐿1
144 nfv mxAC𝐿1
145 nfcv _kA
146 145 66 nfmpt _kxAm/kC
147 146 nfel1 kxAm/kC𝐿1
148 67 mpteq2dv k=mxAC=xAm/kC
149 148 eleq1d k=mxAC𝐿1xAm/kC𝐿1
150 144 147 149 cbvralw kBxAC𝐿1mBxAm/kC𝐿1
151 143 150 sylib φmBxAm/kC𝐿1
152 151 adantr φ¬zwwzBmBxAm/kC𝐿1
153 142 152 100 rspcdva φ¬zwwzBxAz/kC𝐿1
154 140 153 eqeltrrid φ¬zwwzByAy/xz/kC𝐿1
155 154 adantr φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxyAy/xz/kC𝐿1
156 122 129 138 155 ibladd φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxyAy/xmwm/kC+y/xz/kC𝐿1
157 119 156 eqeltrd φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxxAkwzC𝐿1
158 122 129 138 155 itgadd φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAy/xmwm/kC+y/xz/kCdy=Ay/xmwm/kCdy+Ay/xz/kCdy
159 116 109 113 cbvitg Amwm/kC+z/kCdx=Ay/xmwm/kC+y/xz/kCdy
160 114 125 110 cbvitg Amwm/kCdx=Ay/xmwm/kCdy
161 115 139 112 cbvitg Az/kCdx=Ay/xz/kCdy
162 160 161 oveq12i Amwm/kCdx+Az/kCdx=Ay/xmwm/kCdy+Ay/xz/kCdy
163 158 159 162 3eqtr4g φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAmwm/kC+z/kCdx=Amwm/kCdx+Az/kCdx
164 106 itgeq2dv φ¬zwwzBAmwzm/kCdx=Amwm/kC+z/kCdx
165 164 adantr φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAmwzm/kCdx=Amwm/kC+z/kCdx
166 eqidd φ¬zwwzBwz=wz
167 75 sselda φ¬zwwzBmwzmB
168 92 an32s φ¬zwwzBmBxAm/kC
169 152 r19.21bi φ¬zwwzBmBxAm/kC𝐿1
170 168 169 itgcl φ¬zwwzBmBAm/kCdx
171 167 170 syldan φ¬zwwzBmwzAm/kCdx
172 71 166 76 171 fsumsplit φ¬zwwzBmwzAm/kCdx=mwAm/kCdx+mzAm/kCdx
173 172 adantr φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxmwzAm/kCdx=mwAm/kCdx+mzAm/kCdx
174 simprr φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAkwCdx=kwACdx
175 itgeq2 xAkwC=mwm/kCAkwCdx=Amwm/kCdx
176 123 a1i xAkwC=mwm/kC
177 175 176 mprg AkwCdx=Amwm/kCdx
178 nfcv _mACdx
179 145 66 nfitg _kAm/kCdx
180 67 adantr k=mxAC=m/kC
181 180 itgeq2dv k=mACdx=Am/kCdx
182 178 179 181 cbvsumi kwACdx=mwAm/kCdx
183 174 177 182 3eqtr3g φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAmwm/kCdx=mwAm/kCdx
184 102 153 itgcl φ¬zwwzBAz/kCdx
185 184 adantr φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAz/kCdx
186 96 adantr m=zxAm/kC=z/kC
187 186 itgeq2dv m=zAm/kCdx=Az/kCdx
188 187 sumsn zVAz/kCdxmzAm/kCdx=Az/kCdx
189 95 185 188 sylancr φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxmzAm/kCdx=Az/kCdx
190 189 eqcomd φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAz/kCdx=mzAm/kCdx
191 183 190 oveq12d φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAmwm/kCdx+Az/kCdx=mwAm/kCdx+mzAm/kCdx
192 173 191 eqtr4d φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxmwzAm/kCdx=Amwm/kCdx+Az/kCdx
193 163 165 192 3eqtr4d φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAmwzm/kCdx=mwzAm/kCdx
194 itgeq2 xAkwzC=mwzm/kCAkwzCdx=Amwzm/kCdx
195 68 a1i xAkwzC=mwzm/kC
196 194 195 mprg AkwzCdx=Amwzm/kCdx
197 178 179 181 cbvsumi kwzACdx=mwzAm/kCdx
198 193 196 197 3eqtr4g φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxAkwzCdx=kwzACdx
199 157 198 jca φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxxAkwzC𝐿1AkwzCdx=kwzACdx
200 199 ex φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxxAkwzC𝐿1AkwzCdx=kwzACdx
201 200 expr φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxxAkwzC𝐿1AkwzCdx=kwzACdx
202 201 a2d φ¬zwwzBxAkwC𝐿1AkwCdx=kwACdxwzBxAkwzC𝐿1AkwzCdx=kwzACdx
203 64 202 syl5 φ¬zwwBxAkwC𝐿1AkwCdx=kwACdxwzBxAkwzC𝐿1AkwzCdx=kwzACdx
204 203 expcom ¬zwφwBxAkwC𝐿1AkwCdx=kwACdxwzBxAkwzC𝐿1AkwzCdx=kwzACdx
205 204 adantl wFin¬zwφwBxAkwC𝐿1AkwCdx=kwACdxwzBxAkwzC𝐿1AkwzCdx=kwzACdx
206 205 a2d wFin¬zwφwBxAkwC𝐿1AkwCdx=kwACdxφwzBxAkwzC𝐿1AkwzCdx=kwzACdx
207 24 35 46 57 60 206 findcard2s BFinφBBxAkBC𝐿1AkBCdx=kBACdx
208 2 207 mpcom φBBxAkBC𝐿1AkBCdx=kBACdx
209 5 208 mpi φxAkBC𝐿1AkBCdx=kBACdx