Metamath Proof Explorer


Theorem itgspltprt

Description: The S. integral splits on a given partition P . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgspltprt.1 φM
itgspltprt.2 φNM+1
itgspltprt.3 φP:MN
itgspltprt.4 φiM..^NPi<Pi+1
itgspltprt.5 φtPMPNA
itgspltprt.6 φiM..^NtPiPi+1A𝐿1
Assertion itgspltprt φPMPNAdt=iM..^NPiPi+1Adt

Proof

Step Hyp Ref Expression
1 itgspltprt.1 φM
2 itgspltprt.2 φNM+1
3 itgspltprt.3 φP:MN
4 itgspltprt.4 φiM..^NPi<Pi+1
5 itgspltprt.5 φtPMPNA
6 itgspltprt.6 φiM..^NtPiPi+1A𝐿1
7 1 peano2zd φM+1
8 eluzelz NM+1N
9 2 8 syl φN
10 eluzle NM+1M+1N
11 2 10 syl φM+1N
12 eluzelre NM+1N
13 2 12 syl φN
14 13 leidd φNN
15 7 9 9 11 14 elfzd φNM+1N
16 fveq2 j=M+1Pj=PM+1
17 16 oveq2d j=M+1PMPj=PMPM+1
18 17 itgeq1d j=M+1PMPjAdt=PMPM+1Adt
19 oveq2 j=M+1M..^j=M..^M+1
20 19 sumeq1d j=M+1iM..^jPiPi+1Adt=iM..^M+1PiPi+1Adt
21 18 20 eqeq12d j=M+1PMPjAdt=iM..^jPiPi+1AdtPMPM+1Adt=iM..^M+1PiPi+1Adt
22 21 imbi2d j=M+1φPMPjAdt=iM..^jPiPi+1AdtφPMPM+1Adt=iM..^M+1PiPi+1Adt
23 fveq2 j=kPj=Pk
24 23 oveq2d j=kPMPj=PMPk
25 24 itgeq1d j=kPMPjAdt=PMPkAdt
26 oveq2 j=kM..^j=M..^k
27 26 sumeq1d j=kiM..^jPiPi+1Adt=iM..^kPiPi+1Adt
28 25 27 eqeq12d j=kPMPjAdt=iM..^jPiPi+1AdtPMPkAdt=iM..^kPiPi+1Adt
29 28 imbi2d j=kφPMPjAdt=iM..^jPiPi+1AdtφPMPkAdt=iM..^kPiPi+1Adt
30 fveq2 j=k+1Pj=Pk+1
31 30 oveq2d j=k+1PMPj=PMPk+1
32 31 itgeq1d j=k+1PMPjAdt=PMPk+1Adt
33 oveq2 j=k+1M..^j=M..^k+1
34 33 sumeq1d j=k+1iM..^jPiPi+1Adt=iM..^k+1PiPi+1Adt
35 32 34 eqeq12d j=k+1PMPjAdt=iM..^jPiPi+1AdtPMPk+1Adt=iM..^k+1PiPi+1Adt
36 35 imbi2d j=k+1φPMPjAdt=iM..^jPiPi+1AdtφPMPk+1Adt=iM..^k+1PiPi+1Adt
37 fveq2 j=NPj=PN
38 37 oveq2d j=NPMPj=PMPN
39 38 itgeq1d j=NPMPjAdt=PMPNAdt
40 oveq2 j=NM..^j=M..^N
41 40 sumeq1d j=NiM..^jPiPi+1Adt=iM..^NPiPi+1Adt
42 39 41 eqeq12d j=NPMPjAdt=iM..^jPiPi+1AdtPMPNAdt=iM..^NPiPi+1Adt
43 42 imbi2d j=NφPMPjAdt=iM..^jPiPi+1AdtφPMPNAdt=iM..^NPiPi+1Adt
44 1 adantl NM+1φM
45 fzval3 MMM=M..^M+1
46 44 45 syl NM+1φMM=M..^M+1
47 46 eqcomd NM+1φM..^M+1=MM
48 47 sumeq1d NM+1φiM..^M+1PiPi+1Adt=i=MMPiPi+1Adt
49 3 adantr φtPMPM+1P:MN
50 1 zred φM
51 1red φ1
52 50 51 readdcld φM+1
53 50 ltp1d φM<M+1
54 50 52 13 53 11 ltletrd φM<N
55 50 13 54 ltled φMN
56 eluz MNNMMN
57 1 9 56 syl2anc φNMMN
58 55 57 mpbird φNM
59 eluzfz1 NMMMN
60 58 59 syl φMMN
61 60 adantr φtPMPM+1MMN
62 49 61 ffvelcdmd φtPMPM+1PM
63 1 9 9 55 14 elfzd φNMN
64 3 63 ffvelcdmd φPN
65 64 adantr φtPMPM+1PN
66 50 lep1d φMM+1
67 1 9 7 66 11 elfzd φM+1MN
68 3 67 ffvelcdmd φPM+1
69 68 adantr φtPMPM+1PM+1
70 simpr φtPMPM+1tPMPM+1
71 eliccre PMPM+1tPMPM+1t
72 62 69 70 71 syl3anc φtPMPM+1t
73 3 60 ffvelcdmd φPM
74 73 rexrd φPM*
75 74 adantr φtPMPM+1PM*
76 69 rexrd φtPMPM+1PM+1*
77 iccgelb PM*PM+1*tPMPM+1PMt
78 75 76 70 77 syl3anc φtPMPM+1PMt
79 iccleub PM*PM+1*tPMPM+1tPM+1
80 75 76 70 79 syl3anc φtPMPM+1tPM+1
81 3 adantr φiM+1NP:MN
82 elfzelz iM+1Ni
83 82 adantl φiM+1Ni
84 50 adantr φiM+1NM
85 83 zred φiM+1Ni
86 52 adantr φiM+1NM+1
87 53 adantr φiM+1NM<M+1
88 elfzle1 iM+1NM+1i
89 88 adantl φiM+1NM+1i
90 84 86 85 87 89 ltletrd φiM+1NM<i
91 84 85 90 ltled φiM+1NMi
92 elfzle2 iM+1NiN
93 92 adantl φiM+1NiN
94 1 9 jca φMN
95 94 adantr φiM+1NMN
96 elfz1 MNiMNiMiiN
97 95 96 syl φiM+1NiMNiMiiN
98 83 91 93 97 mpbir3and φiM+1NiMN
99 81 98 ffvelcdmd φiM+1NPi
100 3 adantr φiM+1N1P:MN
101 elfzelz iM+1N1i
102 101 adantl φiM+1N1i
103 50 adantr φiM+1N1M
104 102 zred φiM+1N1i
105 52 adantr φiM+1N1M+1
106 53 adantr φiM+1N1M<M+1
107 elfzle1 iM+1N1M+1i
108 107 adantl φiM+1N1M+1i
109 103 105 104 106 108 ltletrd φiM+1N1M<i
110 103 104 109 ltled φiM+1N1Mi
111 13 adantr φiM+1N1N
112 1red φiM+1N11
113 111 112 resubcld φiM+1N1N1
114 elfzle2 iM+1N1iN1
115 114 adantl φiM+1N1iN1
116 111 ltm1d φiM+1N1N1<N
117 104 113 111 115 116 lelttrd φiM+1N1i<N
118 104 111 117 ltled φiM+1N1iN
119 94 adantr φiM+1N1MN
120 119 96 syl φiM+1N1iMNiMiiN
121 102 110 118 120 mpbir3and φiM+1N1iMN
122 100 121 ffvelcdmd φiM+1N1Pi
123 102 peano2zd φiM+1N1i+1
124 104 112 readdcld φiM+1N1i+1
125 103 104 112 109 ltadd1dd φiM+1N1M+1<i+1
126 103 105 124 106 125 lttrd φiM+1N1M<i+1
127 103 124 126 ltled φiM+1N1Mi+1
128 zltp1le iNi<Ni+1N
129 101 9 128 syl2anr φiM+1N1i<Ni+1N
130 117 129 mpbid φiM+1N1i+1N
131 elfz1 MNi+1MNi+1Mi+1i+1N
132 119 131 syl φiM+1N1i+1MNi+1Mi+1i+1N
133 123 127 130 132 mpbir3and φiM+1N1i+1MN
134 100 133 ffvelcdmd φiM+1N1Pi+1
135 eluz MiiMMi
136 1 101 135 syl2an φiM+1N1iMMi
137 110 136 mpbird φiM+1N1iM
138 9 adantr φiM+1N1N
139 elfzo2 iM..^NiMNi<N
140 137 138 117 139 syl3anbrc φiM+1N1iM..^N
141 140 4 syldan φiM+1N1Pi<Pi+1
142 122 134 141 ltled φiM+1N1PiPi+1
143 2 99 142 monoord φPM+1PN
144 143 adantr φtPMPM+1PM+1PN
145 72 69 65 80 144 letrd φtPMPM+1tPN
146 62 65 72 78 145 eliccd φtPMPM+1tPMPN
147 146 5 syldan φtPMPM+1A
148 id φφ
149 fzolb MM..^NMNM<N
150 1 9 54 149 syl3anbrc φMM..^N
151 148 150 jca φφMM..^N
152 eleq1 i=MiM..^NMM..^N
153 152 anbi2d i=MφiM..^NφMM..^N
154 fveq2 i=MPi=PM
155 fvoveq1 i=MPi+1=PM+1
156 154 155 oveq12d i=MPiPi+1=PMPM+1
157 156 mpteq1d i=MtPiPi+1A=tPMPM+1A
158 157 eleq1d i=MtPiPi+1A𝐿1tPMPM+1A𝐿1
159 153 158 imbi12d i=MφiM..^NtPiPi+1A𝐿1φMM..^NtPMPM+1A𝐿1
160 159 6 vtoclg MφMM..^NtPMPM+1A𝐿1
161 1 151 160 sylc φtPMPM+1A𝐿1
162 147 161 itgcl φPMPM+1Adt
163 156 itgeq1d i=MPiPi+1Adt=PMPM+1Adt
164 163 fsum1 MPMPM+1Adti=MMPiPi+1Adt=PMPM+1Adt
165 1 162 164 syl2anc φi=MMPiPi+1Adt=PMPM+1Adt
166 165 adantl NM+1φi=MMPiPi+1Adt=PMPM+1Adt
167 48 166 eqtr2d NM+1φPMPM+1Adt=iM..^M+1PiPi+1Adt
168 167 ex NM+1φPMPM+1Adt=iM..^M+1PiPi+1Adt
169 simp3 kM+1..^NφPMPkAdt=iM..^kPiPi+1Adtφφ
170 simp1 kM+1..^NφPMPkAdt=iM..^kPiPi+1AdtφkM+1..^N
171 simp2 kM+1..^NφPMPkAdt=iM..^kPiPi+1AdtφφPMPkAdt=iM..^kPiPi+1Adt
172 169 171 mpd kM+1..^NφPMPkAdt=iM..^kPiPi+1AdtφPMPkAdt=iM..^kPiPi+1Adt
173 50 adantr φkM+1..^NM
174 elfzoelz kM+1..^Nk
175 174 zred kM+1..^Nk
176 175 adantl φkM+1..^Nk
177 52 adantr φkM+1..^NM+1
178 53 adantr φkM+1..^NM<M+1
179 elfzole1 kM+1..^NM+1k
180 179 adantl φkM+1..^NM+1k
181 173 177 176 178 180 ltletrd φkM+1..^NM<k
182 173 176 181 ltled φkM+1..^NMk
183 eluz MkkMMk
184 1 174 183 syl2an φkM+1..^NkMMk
185 182 184 mpbird φkM+1..^NkM
186 simplll φkM+1..^NiMktPiPi+1φ
187 eliccxr tPiPi+1t*
188 187 adantl φkM+1..^NiMktPiPi+1t*
189 186 73 syl φkM+1..^NiMktPiPi+1PM
190 186 3 syl φkM+1..^NiMktPiPi+1P:MN
191 elfzelz iMki
192 191 adantl φkM+1..^NiMki
193 elfzle1 iMkMi
194 193 adantl φkM+1..^NiMkMi
195 192 zred φkM+1..^NiMki
196 13 ad2antrr φkM+1..^NiMkN
197 176 adantr φkM+1..^NiMkk
198 elfzle2 iMkik
199 198 adantl φkM+1..^NiMkik
200 elfzolt2 kM+1..^Nk<N
201 200 ad2antlr φkM+1..^NiMkk<N
202 195 197 196 199 201 lelttrd φkM+1..^NiMki<N
203 195 196 202 ltled φkM+1..^NiMkiN
204 94 ad2antrr φkM+1..^NiMkMN
205 204 96 syl φkM+1..^NiMkiMNiMiiN
206 192 194 203 205 mpbir3and φkM+1..^NiMkiMN
207 206 adantr φkM+1..^NiMktPiPi+1iMN
208 190 207 ffvelcdmd φkM+1..^NiMktPiPi+1Pi
209 192 peano2zd φkM+1..^NiMki+1
210 50 ad2antrr φkM+1..^NiMkM
211 209 zred φkM+1..^NiMki+1
212 50 adantr φiMkM
213 191 zred iMki
214 213 adantl φiMki
215 1red φiMk1
216 214 215 readdcld φiMki+1
217 193 adantl φiMkMi
218 214 ltp1d φiMki<i+1
219 212 214 216 217 218 lelttrd φiMkM<i+1
220 219 adantlr φkM+1..^NiMkM<i+1
221 210 211 220 ltled φkM+1..^NiMkMi+1
222 9 191 anim12ci φiMkiN
223 222 adantlr φkM+1..^NiMkiN
224 223 128 syl φkM+1..^NiMki<Ni+1N
225 202 224 mpbid φkM+1..^NiMki+1N
226 204 131 syl φkM+1..^NiMki+1MNi+1Mi+1i+1N
227 209 221 225 226 mpbir3and φkM+1..^NiMki+1MN
228 227 adantr φkM+1..^NiMktPiPi+1i+1MN
229 190 228 ffvelcdmd φkM+1..^NiMktPiPi+1Pi+1
230 simpr φkM+1..^NiMktPiPi+1tPiPi+1
231 eliccre PiPi+1tPiPi+1t
232 208 229 230 231 syl3anc φkM+1..^NiMktPiPi+1t
233 elfzuz iMkiM
234 233 adantl φkM+1..^NiMkiM
235 3 ad3antrrr φkM+1..^NiMkjMiP:MN
236 elfzelz jMij
237 236 adantl φkM+1..^NiMkjMij
238 elfzle1 jMiMj
239 238 adantl φkM+1..^NiMkjMiMj
240 237 zred φkM+1..^NiMkjMij
241 196 adantr φkM+1..^NiMkjMiN
242 195 adantr φkM+1..^NiMkjMii
243 elfzle2 jMiji
244 243 adantl φkM+1..^NiMkjMiji
245 202 adantr φkM+1..^NiMkjMii<N
246 240 242 241 244 245 lelttrd φkM+1..^NiMkjMij<N
247 240 241 246 ltled φkM+1..^NiMkjMijN
248 204 adantr φkM+1..^NiMkjMiMN
249 elfz1 MNjMNjMjjN
250 248 249 syl φkM+1..^NiMkjMijMNjMjjN
251 237 239 247 250 mpbir3and φkM+1..^NiMkjMijMN
252 235 251 ffvelcdmd φkM+1..^NiMkjMiPj
253 3 ad3antrrr φkM+1..^NiMkjMi1P:MN
254 elfzelz jMi1j
255 254 adantl φkM+1..^NiMkjMi1j
256 elfzle1 jMi1Mj
257 256 adantl φkM+1..^NiMkjMi1Mj
258 255 zred φkM+1..^NiMkjMi1j
259 196 adantr φkM+1..^NiMkjMi1N
260 195 adantr φkM+1..^NiMkjMi1i
261 1red φkM+1..^NiMkjMi11
262 260 261 resubcld φkM+1..^NiMkjMi1i1
263 elfzle2 jMi1ji1
264 263 adantl φkM+1..^NiMkjMi1ji1
265 260 ltm1d φkM+1..^NiMkjMi1i1<i
266 258 262 260 264 265 lelttrd φkM+1..^NiMkjMi1j<i
267 202 adantr φkM+1..^NiMkjMi1i<N
268 258 260 259 266 267 lttrd φkM+1..^NiMkjMi1j<N
269 258 259 268 ltled φkM+1..^NiMkjMi1jN
270 204 adantr φkM+1..^NiMkjMi1MN
271 270 249 syl φkM+1..^NiMkjMi1jMNjMjjN
272 255 257 269 271 mpbir3and φkM+1..^NiMkjMi1jMN
273 253 272 ffvelcdmd φkM+1..^NiMkjMi1Pj
274 255 peano2zd φkM+1..^NiMkjMi1j+1
275 173 ad2antrr φkM+1..^NiMkjMi1M
276 258 261 readdcld φkM+1..^NiMkjMi1j+1
277 50 adantr φjMi1M
278 254 zred jMi1j
279 278 adantl φjMi1j
280 1red φjMi11
281 279 280 readdcld φjMi1j+1
282 256 adantl φjMi1Mj
283 279 ltp1d φjMi1j<j+1
284 277 279 281 282 283 lelttrd φjMi1M<j+1
285 284 ad4ant14 φkM+1..^NiMkjMi1M<j+1
286 275 276 285 ltled φkM+1..^NiMkjMi1Mj+1
287 zltp1le jij<ij+1i
288 254 192 287 syl2anr φkM+1..^NiMkjMi1j<ij+1i
289 266 288 mpbid φkM+1..^NiMkjMi1j+1i
290 276 260 259 289 267 lelttrd φkM+1..^NiMkjMi1j+1<N
291 276 259 290 ltled φkM+1..^NiMkjMi1j+1N
292 elfz1 MNj+1MNj+1Mj+1j+1N
293 270 292 syl φkM+1..^NiMkjMi1j+1MNj+1Mj+1j+1N
294 274 286 291 293 mpbir3and φkM+1..^NiMkjMi1j+1MN
295 253 294 ffvelcdmd φkM+1..^NiMkjMi1Pj+1
296 simplll φkM+1..^NiMkjMi1φ
297 elfzuz jMi1jM
298 297 adantl φkM+1..^NiMkjMi1jM
299 296 9 syl φkM+1..^NiMkjMi1N
300 elfzo2 jM..^NjMNj<N
301 298 299 268 300 syl3anbrc φkM+1..^NiMkjMi1jM..^N
302 eleq1 i=jiM..^NjM..^N
303 302 anbi2d i=jφiM..^NφjM..^N
304 fveq2 i=jPi=Pj
305 fvoveq1 i=jPi+1=Pj+1
306 304 305 breq12d i=jPi<Pi+1Pj<Pj+1
307 303 306 imbi12d i=jφiM..^NPi<Pi+1φjM..^NPj<Pj+1
308 307 4 chvarvv φjM..^NPj<Pj+1
309 296 301 308 syl2anc φkM+1..^NiMkjMi1Pj<Pj+1
310 273 295 309 ltled φkM+1..^NiMkjMi1PjPj+1
311 234 252 310 monoord φkM+1..^NiMkPMPi
312 311 adantr φkM+1..^NiMktPiPi+1PMPi
313 208 rexrd φkM+1..^NiMktPiPi+1Pi*
314 229 rexrd φkM+1..^NiMktPiPi+1Pi+1*
315 iccgelb Pi*Pi+1*tPiPi+1Pit
316 313 314 230 315 syl3anc φkM+1..^NiMktPiPi+1Pit
317 189 208 232 312 316 letrd φkM+1..^NiMktPiPi+1PMt
318 186 64 syl φkM+1..^NiMktPiPi+1PN
319 iccleub Pi*Pi+1*tPiPi+1tPi+1
320 313 314 230 319 syl3anc φkM+1..^NiMktPiPi+1tPi+1
321 9 ad2antrr φkM+1..^NiMkN
322 eluz i+1NNi+1i+1N
323 209 321 322 syl2anc φkM+1..^NiMkNi+1i+1N
324 225 323 mpbird φkM+1..^NiMkNi+1
325 324 adantr φkM+1..^NiMktPiPi+1Ni+1
326 3 ad3antrrr φkM+1..^NiMkji+1NP:MN
327 elfzelz ji+1Nj
328 327 adantl φkM+1..^NiMkji+1Nj
329 elfzel1 iMkM
330 329 zred iMkM
331 330 adantr iMkji+1NM
332 327 zred ji+1Nj
333 332 adantl iMkji+1Nj
334 213 adantr iMkji+1Ni
335 1red iMkji+1N1
336 334 335 readdcld iMkji+1Ni+1
337 193 adantr iMkji+1NMi
338 334 ltp1d iMkji+1Ni<i+1
339 331 334 336 337 338 lelttrd iMkji+1NM<i+1
340 elfzle1 ji+1Ni+1j
341 340 adantl iMkji+1Ni+1j
342 331 336 333 339 341 ltletrd iMkji+1NM<j
343 331 333 342 ltled iMkji+1NMj
344 343 adantll φkM+1..^NiMkji+1NMj
345 elfzle2 ji+1NjN
346 345 adantl φkM+1..^NiMkji+1NjN
347 204 adantr φkM+1..^NiMkji+1NMN
348 347 249 syl φkM+1..^NiMkji+1NjMNjMjjN
349 328 344 346 348 mpbir3and φkM+1..^NiMkji+1NjMN
350 326 349 ffvelcdmd φkM+1..^NiMkji+1NPj
351 350 adantlr φkM+1..^NiMktPiPi+1ji+1NPj
352 simplll φkM+1..^NiMkji+1N1φ
353 simplr φkM+1..^NiMkji+1N1iMk
354 simpr φkM+1..^NiMkji+1N1ji+1N1
355 3 3ad2ant1 φiMkji+1N1P:MN
356 elfzelz ji+1N1j
357 356 3ad2ant3 φiMkji+1N1j
358 50 3ad2ant1 φiMkji+1N1M
359 357 zred φiMkji+1N1j
360 216 3adant3 φiMkji+1N1i+1
361 219 3adant3 φiMkji+1N1M<i+1
362 elfzle1 ji+1N1i+1j
363 362 3ad2ant3 φiMkji+1N1i+1j
364 358 360 359 361 363 ltletrd φiMkji+1N1M<j
365 358 359 364 ltled φiMkji+1N1Mj
366 356 adantl φji+1N1j
367 366 zred φji+1N1j
368 13 adantr φji+1N1N
369 1red φji+1N11
370 368 369 resubcld φji+1N1N1
371 elfzle2 ji+1N1jN1
372 371 adantl φji+1N1jN1
373 368 ltm1d φji+1N1N1<N
374 367 370 368 372 373 lelttrd φji+1N1j<N
375 367 368 374 ltled φji+1N1jN
376 375 3adant2 φiMkji+1N1jN
377 94 3ad2ant1 φiMkji+1N1MN
378 377 249 syl φiMkji+1N1jMNjMjjN
379 357 365 376 378 mpbir3and φiMkji+1N1jMN
380 355 379 ffvelcdmd φiMkji+1N1Pj
381 357 peano2zd φiMkji+1N1j+1
382 381 zred φiMkji+1N1j+1
383 213 3ad2ant2 φiMkji+1N1i
384 1red φiMkji+1N11
385 218 3adant3 φiMkji+1N1i<i+1
386 383 360 359 385 363 ltletrd φiMkji+1N1i<j
387 383 359 386 ltled φiMkji+1N1ij
388 383 359 384 387 leadd1dd φiMkji+1N1i+1j+1
389 358 360 382 361 388 ltletrd φiMkji+1N1M<j+1
390 358 382 389 ltled φiMkji+1N1Mj+1
391 zltp1le jNj<Nj+1N
392 356 9 391 syl2anr φji+1N1j<Nj+1N
393 374 392 mpbid φji+1N1j+1N
394 393 3adant2 φiMkji+1N1j+1N
395 377 292 syl φiMkji+1N1j+1MNj+1Mj+1j+1N
396 381 390 394 395 mpbir3and φiMkji+1N1j+1MN
397 355 396 ffvelcdmd φiMkji+1N1Pj+1
398 simp1 φiMkji+1N1φ
399 1 3ad2ant1 φiMkji+1N1M
400 eluz MjjMMj
401 399 357 400 syl2anc φiMkji+1N1jMMj
402 365 401 mpbird φiMkji+1N1jM
403 9 3ad2ant1 φiMkji+1N1N
404 374 3adant2 φiMkji+1N1j<N
405 402 403 404 300 syl3anbrc φiMkji+1N1jM..^N
406 398 405 308 syl2anc φiMkji+1N1Pj<Pj+1
407 380 397 406 ltled φiMkji+1N1PjPj+1
408 352 353 354 407 syl3anc φkM+1..^NiMkji+1N1PjPj+1
409 408 adantlr φkM+1..^NiMktPiPi+1ji+1N1PjPj+1
410 325 351 409 monoord φkM+1..^NiMktPiPi+1Pi+1PN
411 232 229 318 320 410 letrd φkM+1..^NiMktPiPi+1tPN
412 64 rexrd φPN*
413 74 412 jca φPM*PN*
414 186 413 syl φkM+1..^NiMktPiPi+1PM*PN*
415 elicc1 PM*PN*tPMPNt*PMttPN
416 414 415 syl φkM+1..^NiMktPiPi+1tPMPNt*PMttPN
417 188 317 411 416 mpbir3and φkM+1..^NiMktPiPi+1tPMPN
418 186 417 5 syl2anc φkM+1..^NiMktPiPi+1A
419 simpll φkM+1..^NiMkφ
420 234 321 202 139 syl3anbrc φkM+1..^NiMkiM..^N
421 419 420 6 syl2anc φkM+1..^NiMktPiPi+1A𝐿1
422 418 421 itgcl φkM+1..^NiMkPiPi+1Adt
423 fveq2 i=kPi=Pk
424 fvoveq1 i=kPi+1=Pk+1
425 423 424 oveq12d i=kPiPi+1=PkPk+1
426 425 itgeq1d i=kPiPi+1Adt=PkPk+1Adt
427 185 422 426 fzosump1 φkM+1..^NiM..^k+1PiPi+1Adt=iM..^kPiPi+1Adt+PkPk+1Adt
428 427 3adant3 φkM+1..^NPMPkAdt=iM..^kPiPi+1AdtiM..^k+1PiPi+1Adt=iM..^kPiPi+1Adt+PkPk+1Adt
429 oveq1 PMPkAdt=iM..^kPiPi+1AdtPMPkAdt+PkPk+1Adt=iM..^kPiPi+1Adt+PkPk+1Adt
430 429 eqcomd PMPkAdt=iM..^kPiPi+1AdtiM..^kPiPi+1Adt+PkPk+1Adt=PMPkAdt+PkPk+1Adt
431 430 3ad2ant3 φkM+1..^NPMPkAdt=iM..^kPiPi+1AdtiM..^kPiPi+1Adt+PkPk+1Adt=PMPkAdt+PkPk+1Adt
432 73 adantr φkM+1..^NPM
433 3 adantr φkM+1..^NP:MN
434 174 adantl φkM+1..^Nk
435 434 peano2zd φkM+1..^Nk+1
436 435 zred φkM+1..^Nk+1
437 176 ltp1d φkM+1..^Nk<k+1
438 173 176 436 181 437 lttrd φkM+1..^NM<k+1
439 173 436 438 ltled φkM+1..^NMk+1
440 200 adantl φkM+1..^Nk<N
441 zltp1le kNk<Nk+1N
442 174 9 441 syl2anr φkM+1..^Nk<Nk+1N
443 440 442 mpbid φkM+1..^Nk+1N
444 94 adantr φkM+1..^NMN
445 elfz1 MNk+1MNk+1Mk+1k+1N
446 444 445 syl φkM+1..^Nk+1MNk+1Mk+1k+1N
447 435 439 443 446 mpbir3and φkM+1..^Nk+1MN
448 433 447 ffvelcdmd φkM+1..^NPk+1
449 13 adantr φkM+1..^NN
450 176 449 440 ltled φkM+1..^NkN
451 elfz1 MNkMNkMkkN
452 444 451 syl φkM+1..^NkMNkMkkN
453 434 182 450 452 mpbir3and φkM+1..^NkMN
454 433 453 ffvelcdmd φkM+1..^NPk
455 454 rexrd φkM+1..^NPk*
456 3 ad2antrr φkM+1..^NiMkP:MN
457 456 206 ffvelcdmd φkM+1..^NiMkPi
458 3 ad2antrr φkM+1..^NiMk1P:MN
459 elfzelz iMk1i
460 459 adantl φkM+1..^NiMk1i
461 elfzle1 iMk1Mi
462 461 adantl φkM+1..^NiMk1Mi
463 460 zred φkM+1..^NiMk1i
464 13 ad2antrr φkM+1..^NiMk1N
465 176 adantr φkM+1..^NiMk1k
466 1red φkM+1..^NiMk11
467 465 466 resubcld φkM+1..^NiMk1k1
468 elfzle2 iMk1ik1
469 468 adantl φkM+1..^NiMk1ik1
470 465 ltm1d φkM+1..^NiMk1k1<k
471 463 467 465 469 470 lelttrd φkM+1..^NiMk1i<k
472 440 adantr φkM+1..^NiMk1k<N
473 463 465 464 471 472 lttrd φkM+1..^NiMk1i<N
474 463 464 473 ltled φkM+1..^NiMk1iN
475 94 ad2antrr φkM+1..^NiMk1MN
476 475 96 syl φkM+1..^NiMk1iMNiMiiN
477 460 462 474 476 mpbir3and φkM+1..^NiMk1iMN
478 458 477 ffvelcdmd φkM+1..^NiMk1Pi
479 460 peano2zd φkM+1..^NiMk1i+1
480 50 ad2antrr φkM+1..^NiMk1M
481 463 466 readdcld φkM+1..^NiMk1i+1
482 463 ltp1d φkM+1..^NiMk1i<i+1
483 480 463 481 462 482 lelttrd φkM+1..^NiMk1M<i+1
484 480 481 483 ltled φkM+1..^NiMk1Mi+1
485 zltp1le iki<ki+1k
486 459 434 485 syl2anr φkM+1..^NiMk1i<ki+1k
487 471 486 mpbid φkM+1..^NiMk1i+1k
488 481 465 464 487 472 lelttrd φkM+1..^NiMk1i+1<N
489 481 464 488 ltled φkM+1..^NiMk1i+1N
490 475 131 syl φkM+1..^NiMk1i+1MNi+1Mi+1i+1N
491 479 484 489 490 mpbir3and φkM+1..^NiMk1i+1MN
492 458 491 ffvelcdmd φkM+1..^NiMk1Pi+1
493 simpll φkM+1..^NiMk1φ
494 elfzuz iMk1iM
495 494 adantl φkM+1..^NiMk1iM
496 9 ad2antrr φkM+1..^NiMk1N
497 495 496 473 139 syl3anbrc φkM+1..^NiMk1iM..^N
498 493 497 4 syl2anc φkM+1..^NiMk1Pi<Pi+1
499 478 492 498 ltled φkM+1..^NiMk1PiPi+1
500 185 457 499 monoord φkM+1..^NPMPk
501 9 adantr φkM+1..^NN
502 elfzo2 kM..^NkMNk<N
503 185 501 440 502 syl3anbrc φkM+1..^NkM..^N
504 eleq1 i=kiM..^NkM..^N
505 504 anbi2d i=kφiM..^NφkM..^N
506 423 424 breq12d i=kPi<Pi+1Pk<Pk+1
507 505 506 imbi12d i=kφiM..^NPi<Pi+1φkM..^NPk<Pk+1
508 507 4 chvarvv φkM..^NPk<Pk+1
509 503 508 syldan φkM+1..^NPk<Pk+1
510 454 448 509 ltled φkM+1..^NPkPk+1
511 74 adantr φkM+1..^NPM*
512 448 rexrd φkM+1..^NPk+1*
513 elicc1 PM*Pk+1*PkPMPk+1Pk*PMPkPkPk+1
514 511 512 513 syl2anc φkM+1..^NPkPMPk+1Pk*PMPkPkPk+1
515 455 500 510 514 mpbir3and φkM+1..^NPkPMPk+1
516 simpll φkM+1..^NtPMPk+1φ
517 eliccxr tPMPk+1t*
518 517 adantl φkM+1..^NtPMPk+1t*
519 74 ad2antrr φkM+1..^NtPMPk+1PM*
520 512 adantr φkM+1..^NtPMPk+1Pk+1*
521 simpr φkM+1..^NtPMPk+1tPMPk+1
522 iccgelb PM*Pk+1*tPMPk+1PMt
523 519 520 521 522 syl3anc φkM+1..^NtPMPk+1PMt
524 73 ad2antrr φkM+1..^NtPMPk+1PM
525 448 adantr φkM+1..^NtPMPk+1Pk+1
526 eliccre PMPk+1tPMPk+1t
527 524 525 521 526 syl3anc φkM+1..^NtPMPk+1t
528 64 ad2antrr φkM+1..^NtPMPk+1PN
529 iccleub PM*Pk+1*tPMPk+1tPk+1
530 519 520 521 529 syl3anc φkM+1..^NtPMPk+1tPk+1
531 eluz2 Nk+1k+1Nk+1N
532 435 501 443 531 syl3anbrc φkM+1..^NNk+1
533 3 ad2antrr φkM+1..^Nik+1NP:MN
534 1 ad2antrr φkM+1..^Nik+1NM
535 9 ad2antrr φkM+1..^Nik+1NN
536 elfzelz ik+1Ni
537 536 adantl φkM+1..^Nik+1Ni
538 50 ad2antrr φkM+1..^Nik+1NM
539 537 zred φkM+1..^Nik+1Ni
540 176 adantr φkM+1..^Nik+1Nk
541 181 adantr φkM+1..^Nik+1NM<k
542 175 adantr kM+1..^Nik+1Nk
543 1red kM+1..^Nik+1N1
544 542 543 readdcld kM+1..^Nik+1Nk+1
545 536 zred ik+1Ni
546 545 adantl kM+1..^Nik+1Ni
547 542 ltp1d kM+1..^Nik+1Nk<k+1
548 elfzle1 ik+1Nk+1i
549 548 adantl kM+1..^Nik+1Nk+1i
550 542 544 546 547 549 ltletrd kM+1..^Nik+1Nk<i
551 550 adantll φkM+1..^Nik+1Nk<i
552 538 540 539 541 551 lttrd φkM+1..^Nik+1NM<i
553 538 539 552 ltled φkM+1..^Nik+1NMi
554 elfzle2 ik+1NiN
555 554 adantl φkM+1..^Nik+1NiN
556 534 535 537 553 555 elfzd φkM+1..^Nik+1NiMN
557 533 556 ffvelcdmd φkM+1..^Nik+1NPi
558 3 ad2antrr φkM+1..^Nik+1N1P:MN
559 1 ad2antrr φkM+1..^Nik+1N1M
560 9 ad2antrr φkM+1..^Nik+1N1N
561 elfzelz ik+1N1i
562 561 adantl φkM+1..^Nik+1N1i
563 50 ad2antrr φkM+1..^Nik+1N1M
564 562 zred φkM+1..^Nik+1N1i
565 176 adantr φkM+1..^Nik+1N1k
566 181 adantr φkM+1..^Nik+1N1M<k
567 175 adantr kM+1..^Nik+1N1k
568 1red kM+1..^Nik+1N11
569 567 568 readdcld kM+1..^Nik+1N1k+1
570 561 zred ik+1N1i
571 570 adantl kM+1..^Nik+1N1i
572 567 ltp1d kM+1..^Nik+1N1k<k+1
573 elfzle1 ik+1N1k+1i
574 573 adantl kM+1..^Nik+1N1k+1i
575 567 569 571 572 574 ltletrd kM+1..^Nik+1N1k<i
576 575 adantll φkM+1..^Nik+1N1k<i
577 563 565 564 566 576 lttrd φkM+1..^Nik+1N1M<i
578 563 564 577 ltled φkM+1..^Nik+1N1Mi
579 570 adantl φik+1N1i
580 13 adantr φik+1N1N
581 1red φik+1N11
582 580 581 resubcld φik+1N1N1
583 elfzle2 ik+1N1iN1
584 583 adantl φik+1N1iN1
585 580 ltm1d φik+1N1N1<N
586 579 582 580 584 585 lelttrd φik+1N1i<N
587 579 580 586 ltled φik+1N1iN
588 587 adantlr φkM+1..^Nik+1N1iN
589 559 560 562 578 588 elfzd φkM+1..^Nik+1N1iMN
590 558 589 ffvelcdmd φkM+1..^Nik+1N1Pi
591 562 peano2zd φkM+1..^Nik+1N1i+1
592 591 zred φkM+1..^Nik+1N1i+1
593 564 ltp1d φkM+1..^Nik+1N1i<i+1
594 565 564 592 576 593 lttrd φkM+1..^Nik+1N1k<i+1
595 563 565 592 566 594 lttrd φkM+1..^Nik+1N1M<i+1
596 563 592 595 ltled φkM+1..^Nik+1N1Mi+1
597 586 adantlr φkM+1..^Nik+1N1i<N
598 561 501 128 syl2anr φkM+1..^Nik+1N1i<Ni+1N
599 597 598 mpbid φkM+1..^Nik+1N1i+1N
600 559 560 591 596 599 elfzd φkM+1..^Nik+1N1i+1MN
601 558 600 ffvelcdmd φkM+1..^Nik+1N1Pi+1
602 simpll φkM+1..^Nik+1N1φ
603 eluz2 iMMiMi
604 559 562 578 603 syl3anbrc φkM+1..^Nik+1N1iM
605 604 560 597 139 syl3anbrc φkM+1..^Nik+1N1iM..^N
606 602 605 4 syl2anc φkM+1..^Nik+1N1Pi<Pi+1
607 590 601 606 ltled φkM+1..^Nik+1N1PiPi+1
608 532 557 607 monoord φkM+1..^NPk+1PN
609 608 adantr φkM+1..^NtPMPk+1Pk+1PN
610 527 525 528 530 609 letrd φkM+1..^NtPMPk+1tPN
611 413 ad2antrr φkM+1..^NtPMPk+1PM*PN*
612 611 415 syl φkM+1..^NtPMPk+1tPMPNt*PMttPN
613 518 523 610 612 mpbir3and φkM+1..^NtPMPk+1tPMPN
614 516 613 5 syl2anc φkM+1..^NtPMPk+1A
615 nfv tφkM+1..^N
616 1 adantr φkM+1..^NM
617 elfzouz kM+1..^NkM+1
618 617 adantl φkM+1..^NkM+1
619 simpll φkM+1..^NiM..^kφ
620 elfzouz iM..^kiM
621 620 adantl φkM+1..^NiM..^kiM
622 9 ad2antrr φkM+1..^NiM..^kN
623 elfzoelz iM..^ki
624 623 zred iM..^ki
625 624 adantl φkM+1..^NiM..^ki
626 176 adantr φkM+1..^NiM..^kk
627 13 ad2antrr φkM+1..^NiM..^kN
628 elfzolt2 iM..^ki<k
629 628 adantl φkM+1..^NiM..^ki<k
630 440 adantr φkM+1..^NiM..^kk<N
631 625 626 627 629 630 lttrd φkM+1..^NiM..^ki<N
632 621 622 631 139 syl3anbrc φkM+1..^NiM..^kiM..^N
633 619 632 4 syl2anc φkM+1..^NiM..^kPi<Pi+1
634 simpll φkM+1..^NtPMPkφ
635 73 ad2antrr φkM+1..^NtPMPkPM
636 64 ad2antrr φkM+1..^NtPMPkPN
637 454 adantr φkM+1..^NtPMPkPk
638 simpr φkM+1..^NtPMPktPMPk
639 eliccre PMPktPMPkt
640 635 637 638 639 syl3anc φkM+1..^NtPMPkt
641 74 ad2antrr φkM+1..^NtPMPkPM*
642 455 adantr φkM+1..^NtPMPkPk*
643 iccgelb PM*Pk*tPMPkPMt
644 641 642 638 643 syl3anc φkM+1..^NtPMPkPMt
645 iccleub PM*Pk*tPMPktPk
646 641 642 638 645 syl3anc φkM+1..^NtPMPktPk
647 elfzouz2 kM+1..^NNk
648 647 adantl φkM+1..^NNk
649 3 ad2antrr φkM+1..^NikNP:MN
650 1 ad2antrr φkM+1..^NikNM
651 9 ad2antrr φkM+1..^NikNN
652 elfzelz ikNi
653 652 adantl φkM+1..^NikNi
654 50 ad2antrr φkM+1..^NikNM
655 653 zred φkM+1..^NikNi
656 176 adantr φkM+1..^NikNk
657 181 adantr φkM+1..^NikNM<k
658 elfzle1 ikNki
659 658 adantl φkM+1..^NikNki
660 654 656 655 657 659 ltletrd φkM+1..^NikNM<i
661 654 655 660 ltled φkM+1..^NikNMi
662 elfzle2 ikNiN
663 662 adantl φkM+1..^NikNiN
664 650 651 653 661 663 elfzd φkM+1..^NikNiMN
665 649 664 ffvelcdmd φkM+1..^NikNPi
666 3 ad2antrr φkM+1..^NikN1P:MN
667 1 ad2antrr φkM+1..^NikN1M
668 9 ad2antrr φkM+1..^NikN1N
669 elfzelz ikN1i
670 669 adantl φkM+1..^NikN1i
671 50 ad2antrr φkM+1..^NikN1M
672 670 zred φkM+1..^NikN1i
673 176 adantr φkM+1..^NikN1k
674 181 adantr φkM+1..^NikN1M<k
675 elfzle1 ikN1ki
676 675 adantl φkM+1..^NikN1ki
677 671 673 672 674 676 ltletrd φkM+1..^NikN1M<i
678 671 672 677 ltled φkM+1..^NikN1Mi
679 669 zred ikN1i
680 679 adantl φikN1i
681 13 adantr φikN1N
682 1red φikN11
683 681 682 resubcld φikN1N1
684 elfzle2 ikN1iN1
685 684 adantl φikN1iN1
686 681 ltm1d φikN1N1<N
687 680 683 681 685 686 lelttrd φikN1i<N
688 680 681 687 ltled φikN1iN
689 688 adantlr φkM+1..^NikN1iN
690 667 668 670 678 689 elfzd φkM+1..^NikN1iMN
691 666 690 ffvelcdmd φkM+1..^NikN1Pi
692 670 peano2zd φkM+1..^NikN1i+1
693 692 zred φkM+1..^NikN1i+1
694 672 ltp1d φkM+1..^NikN1i<i+1
695 671 672 693 678 694 lelttrd φkM+1..^NikN1M<i+1
696 671 693 695 ltled φkM+1..^NikN1Mi+1
697 669 9 128 syl2anr φikN1i<Ni+1N
698 687 697 mpbid φikN1i+1N
699 698 adantlr φkM+1..^NikN1i+1N
700 667 668 692 696 699 elfzd φkM+1..^NikN1i+1MN
701 666 700 ffvelcdmd φkM+1..^NikN1Pi+1
702 simpll φkM+1..^NikN1φ
703 667 670 678 603 syl3anbrc φkM+1..^NikN1iM
704 687 adantlr φkM+1..^NikN1i<N
705 703 668 704 139 syl3anbrc φkM+1..^NikN1iM..^N
706 702 705 4 syl2anc φkM+1..^NikN1Pi<Pi+1
707 691 701 706 ltled φkM+1..^NikN1PiPi+1
708 648 665 707 monoord φkM+1..^NPkPN
709 708 adantr φkM+1..^NtPMPkPkPN
710 640 637 636 646 709 letrd φkM+1..^NtPMPktPN
711 635 636 640 644 710 eliccd φkM+1..^NtPMPktPMPN
712 634 711 5 syl2anc φkM+1..^NtPMPkA
713 619 632 6 syl2anc φkM+1..^NiM..^ktPiPi+1A𝐿1
714 615 616 618 457 633 712 713 iblspltprt φkM+1..^NtPMPkA𝐿1
715 425 mpteq1d i=ktPiPi+1A=tPkPk+1A
716 715 eleq1d i=ktPiPi+1A𝐿1tPkPk+1A𝐿1
717 505 716 imbi12d i=kφiM..^NtPiPi+1A𝐿1φkM..^NtPkPk+1A𝐿1
718 717 6 chvarvv φkM..^NtPkPk+1A𝐿1
719 503 718 syldan φkM+1..^NtPkPk+1A𝐿1
720 432 448 515 614 714 719 itgspliticc φkM+1..^NPMPk+1Adt=PMPkAdt+PkPk+1Adt
721 720 eqcomd φkM+1..^NPMPkAdt+PkPk+1Adt=PMPk+1Adt
722 721 3adant3 φkM+1..^NPMPkAdt=iM..^kPiPi+1AdtPMPkAdt+PkPk+1Adt=PMPk+1Adt
723 428 431 722 3eqtrrd φkM+1..^NPMPkAdt=iM..^kPiPi+1AdtPMPk+1Adt=iM..^k+1PiPi+1Adt
724 169 170 172 723 syl3anc kM+1..^NφPMPkAdt=iM..^kPiPi+1AdtφPMPk+1Adt=iM..^k+1PiPi+1Adt
725 724 3exp kM+1..^NφPMPkAdt=iM..^kPiPi+1AdtφPMPk+1Adt=iM..^k+1PiPi+1Adt
726 22 29 36 43 168 725 fzind2 NM+1NφPMPNAdt=iM..^NPiPi+1Adt
727 15 726 mpcom φPMPNAdt=iM..^NPiPi+1Adt