Metamath Proof Explorer


Theorem lcmineqlem12

Description: Base case for induction. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypothesis lcmineqlem12.1 φN
Assertion lcmineqlem12 φ01t111tN1dt=11(N1)

Proof

Step Hyp Ref Expression
1 lcmineqlem12.1 φN
2 elunitcn t01t
3 1m1e0 11=0
4 3 oveq2i t11=t0
5 simpr φtt
6 5 exp0d φtt0=1
7 4 6 eqtrid φtt11=1
8 7 oveq1d φtt111tN1=11tN1
9 1cnd φt1
10 9 5 subcld φt1t
11 nnm1nn0 NN10
12 1 11 syl φN10
13 12 adantr φtN10
14 10 13 expcld φt1tN1
15 14 mullidd φt11tN1=1tN1
16 8 15 eqtrd φtt111tN1=1tN1
17 2 16 sylan2 φt01t111tN1=1tN1
18 17 itgeq2dv φ01t111tN1dt=011tN1dt
19 0red φ0
20 1red φ1
21 2 14 sylan2 φt011tN1
22 19 20 21 itgioo φ011tN1dt=011tN1dt
23 eqidd φt01x011xN1=x011xN1
24 oveq2 x=t1x=1t
25 24 oveq1d x=t1xN1=1tN1
26 25 adantl φx=t1xN1=1tN1
27 26 adantlr φt01x=t1xN1=1tN1
28 simpr φt01t01
29 1cnd φt011
30 elioore t01t
31 recn tt
32 28 30 31 3syl φt01t
33 29 32 subcld φt011t
34 12 adantr φt01N10
35 33 34 expcld φt011tN1
36 23 27 28 35 fvmptd φt01x011xN1t=1tN1
37 36 itgeq2dv φ01x011xN1tdt=011tN1dt
38 cnelprrecn
39 38 a1i φ
40 1cnd φx1
41 simpr φxx
42 40 41 subcld φx1x
43 nnnn0 NN0
44 1 43 syl φN0
45 44 adantr φxN0
46 42 45 expcld φx1xN
47 45 nn0cnd φxN
48 12 adantr φxN10
49 42 48 expcld φx1xN1
50 47 49 mulcld φxN1xN1
51 40 negcld φx1
52 50 51 mulcld φxN1xN1-1
53 simpr φyy
54 44 adantr φyN0
55 53 54 expcld φyyN
56 54 nn0cnd φyN
57 12 adantr φyN10
58 53 57 expcld φyyN1
59 56 58 mulcld φyNyN1
60 0cnd φx0
61 1cnd φ1
62 39 61 dvmptc φdx1dx=x0
63 39 dvmptid φdxxdx=x1
64 39 40 60 62 41 40 63 dvmptsub φdx1xdx=x01
65 df-neg 1=01
66 65 a1i φ1=01
67 66 mpteq2dv φx1=x01
68 64 67 eqtr4d φdx1xdx=x1
69 dvexp NdyyNdy=yNyN1
70 1 69 syl φdyyNdy=yNyN1
71 oveq1 y=1xyN=1xN
72 oveq1 y=1xyN1=1xN1
73 72 oveq2d y=1xNyN1=N1xN1
74 39 39 42 51 55 59 68 70 71 73 dvmptco φdx1xNdx=xN1xN1-1
75 61 negcld φ1
76 1 nncnd φN
77 1 nnne0d φN0
78 75 76 77 divcld φ1N
79 39 46 52 74 78 dvmptcmul φdx1N1xNdx=x1NN1xN1-1
80 78 adantr φx1N
81 80 50 51 mulassd φx1NN1xN1-1=1NN1xN1-1
82 81 eqcomd φx1NN1xN1-1=1NN1xN1-1
83 80 47 49 mulassd φx1N N1xN1=1NN1xN1
84 83 oveq1d φx1N N1xN1-1=1NN1xN1-1
85 84 eqcomd φx1NN1xN1-1=1N N1xN1-1
86 82 85 eqtrd φx1NN1xN1-1=1N N1xN1-1
87 77 adantr φxN0
88 51 47 87 divcan1d φx1N N=1
89 88 oveq1d φx1N N1xN1=-11xN1
90 89 oveq1d φx1N N1xN1-1=-11xN1-1
91 86 90 eqtrd φx1NN1xN1-1=-11xN1-1
92 51 51 49 mul32d φx-1-11xN1=-11xN1-1
93 92 eqcomd φx-11xN1-1=-1-11xN1
94 91 93 eqtrd φx1NN1xN1-1=-1-11xN1
95 40 40 mul2negd φx-1-1=11
96 1t1e1 11=1
97 95 96 eqtrdi φx-1-1=1
98 97 oveq1d φx-1-11xN1=11xN1
99 49 mullidd φx11xN1=1xN1
100 98 99 eqtrd φx-1-11xN1=1xN1
101 94 100 eqtrd φx1NN1xN1-1=1xN1
102 101 mpteq2dva φx1NN1xN1-1=x1xN1
103 79 102 eqtrd φdx1N1xNdx=x1xN1
104 80 46 mulcld φx1N1xN
105 103 104 49 resdvopclptsd φdx011N1xNdx=x011xN1
106 105 fveq1d φdx011N1xNdxt=x011xN1t
107 106 ralrimivw φt01dx011N1xNdxt=x011xN1t
108 itgeq2 t01dx011N1xNdxt=x011xN1t01dx011N1xNdxtdt=01x011xN1tdt
109 107 108 syl φ01dx011N1xNdxtdt=01x011xN1tdt
110 0le1 01
111 110 a1i φ01
112 nfv xφ
113 ax-1cn 1
114 ssid
115 cncfmptc 1x1:cn
116 113 114 114 115 mp3an x1:cn
117 116 a1i φx1:cn
118 cncfmptid xx:cn
119 114 114 118 mp2an xx:cn
120 119 a1i φxx:cn
121 117 120 subcncf φx1x:cn
122 expcncf N10yyN1:cn
123 12 122 syl φyyN1:cn
124 ssidd φ
125 112 121 123 124 72 cncfcompt2 φx1xN1:cn
126 125 resopunitintvd φx011xN1:01cn
127 105 eleq1d φdx011N1xNdx:01cnx011xN1:01cn
128 126 127 mpbird φdx011N1xNdx:01cn
129 ioossicc 0101
130 129 a1i φ0101
131 ioombl 01domvol
132 131 a1i φ01domvol
133 elunitcn x01x
134 133 49 sylan2 φx011xN1
135 114 a1i φ
136 112 121 123 135 72 cncfcompt2 φx1xN1:cn
137 136 resclunitintvd φx011xN1:01cn
138 19 20 137 3jca φ01x011xN1:01cn
139 cnicciblnc 01x011xN1:01cnx011xN1𝐿1
140 138 139 syl φx011xN1𝐿1
141 130 132 134 140 iblss φx011xN1𝐿1
142 105 141 eqeltrd φdx011N1xNdx𝐿1
143 cncfmptc 1Nx1N:cn
144 114 114 143 mp3an23 1Nx1N:cn
145 78 144 syl φx1N:cn
146 145 resclunitintvd φx011N:01cn
147 expcncf N0yyN:cn
148 44 147 syl φyyN:cn
149 112 121 148 124 71 cncfcompt2 φx1xN:cn
150 149 resclunitintvd φx011xN:01cn
151 146 150 mulcncf φx011N1xN:01cn
152 19 20 111 128 142 151 ftc2 φ01dx011N1xNdxtdt=x011N1xN1x011N1xN0
153 eqidd φx011N1xN=x011N1xN
154 simpr φx=1x=1
155 154 oveq2d φx=11x=11
156 155 3 eqtrdi φx=11x=0
157 156 oveq1d φx=11xN=0N
158 0exp N0N=0
159 1 158 syl φ0N=0
160 159 adantr φx=10N=0
161 157 160 eqtrd φx=11xN=0
162 161 oveq2d φx=11N1xN=1N0
163 78 mul01d φ1N0=0
164 163 adantr φx=11N0=0
165 162 164 eqtrd φx=11N1xN=0
166 1elunit 101
167 166 a1i φ101
168 0cnd φ0
169 153 165 167 168 fvmptd φx011N1xN1=0
170 simpr φx=0x=0
171 170 oveq2d φx=01x=10
172 1m0e1 10=1
173 171 172 eqtrdi φx=01x=1
174 173 oveq1d φx=01xN=1N
175 44 nn0zd φN
176 1exp N1N=1
177 175 176 syl φ1N=1
178 177 adantr φx=01N=1
179 174 178 eqtrd φx=01xN=1
180 179 oveq2d φx=01N1xN=1N1
181 78 adantr φx=01N
182 181 mulridd φx=01N1=1N
183 180 182 eqtrd φx=01N1xN=1N
184 0elunit 001
185 184 a1i φ001
186 153 183 185 78 fvmptd φx011N1xN0=1N
187 169 186 oveq12d φx011N1xN1x011N1xN0=01N
188 152 187 eqtrd φ01dx011N1xNdxtdt=01N
189 df-neg 1N=01N
190 189 a1i φ1N=01N
191 61 76 77 divnegd φ1N=1N
192 191 oveq2d φ01N=01N
193 190 192 eqtr2d φ01N=1N
194 76 77 reccld φ1N
195 194 negnegd φ1N=1N
196 193 195 eqtrd φ01N=1N
197 188 196 eqtrd φ01dx011N1xNdxtdt=1N
198 109 197 eqtr3d φ01x011xN1tdt=1N
199 37 198 eqtr3d φ011tN1dt=1N
200 22 199 eqtr3d φ011tN1dt=1N
201 bcn1 N0(N1)=N
202 44 201 syl φ(N1)=N
203 202 oveq2d φ1(N1)=1 N
204 76 mullidd φ1 N=N
205 203 204 eqtrd φ1(N1)=N
206 205 oveq2d φ11(N1)=1N
207 200 206 eqtr4d φ011tN1dt=11(N1)
208 18 207 eqtrd φ01t111tN1dt=11(N1)