Metamath Proof Explorer


Theorem madjusmdetlem4

Description: Lemma for madjusmdet . (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses madjusmdet.b B=BaseA
madjusmdet.a A=1NMatR
madjusmdet.d D=1NmaDetR
madjusmdet.k K=1NmaAdjuR
madjusmdet.t ·˙=R
madjusmdet.z Z=ℤRHomR
madjusmdet.e E=1N1maDetR
madjusmdet.n φN
madjusmdet.r φRCRing
madjusmdet.i φI1N
madjusmdet.j φJ1N
madjusmdet.m φMB
madjusmdetlem2.p P=i1Nifi=1IifiIi1i
madjusmdetlem2.s S=i1Nifi=1NifiNi1i
madjusmdetlem4.q Q=j1Nifj=1JifjJj1j
madjusmdetlem4.t T=j1Nifj=1NifjNj1j
Assertion madjusmdetlem4 φJKMI=Z1I+J·˙EIsubMat1MJ

Proof

Step Hyp Ref Expression
1 madjusmdet.b B=BaseA
2 madjusmdet.a A=1NMatR
3 madjusmdet.d D=1NmaDetR
4 madjusmdet.k K=1NmaAdjuR
5 madjusmdet.t ·˙=R
6 madjusmdet.z Z=ℤRHomR
7 madjusmdet.e E=1N1maDetR
8 madjusmdet.n φN
9 madjusmdet.r φRCRing
10 madjusmdet.i φI1N
11 madjusmdet.j φJ1N
12 madjusmdet.m φMB
13 madjusmdetlem2.p P=i1Nifi=1IifiIi1i
14 madjusmdetlem2.s S=i1Nifi=1NifiNi1i
15 madjusmdetlem4.q Q=j1Nifj=1JifjJj1j
16 madjusmdetlem4.t T=j1Nifj=1NifjNj1j
17 eqid BaseSymGrp1N=BaseSymGrp1N
18 eqid pmSgn1N=pmSgn1N
19 eqid I1NminMatR1RMJ=I1NminMatR1RMJ
20 fveq2 k=iPS-1k=PS-1i
21 20 oveq1d k=iPS-1kI1NminMatR1RMJQT-1l=PS-1iI1NminMatR1RMJQT-1l
22 fveq2 l=jQT-1l=QT-1j
23 22 oveq2d l=jPS-1iI1NminMatR1RMJQT-1l=PS-1iI1NminMatR1RMJQT-1j
24 21 23 cbvmpov k1N,l1NPS-1kI1NminMatR1RMJQT-1l=i1N,j1NPS-1iI1NminMatR1RMJQT-1j
25 eqid 1N=1N
26 eqid SymGrp1N=SymGrp1N
27 25 13 26 17 fzto1st I1NPBaseSymGrp1N
28 10 27 syl φPBaseSymGrp1N
29 nnuz =1
30 8 29 eleqtrdi φN1
31 eluzfz2 N1N1N
32 30 31 syl φN1N
33 25 14 26 17 fzto1st N1NSBaseSymGrp1N
34 32 33 syl φSBaseSymGrp1N
35 eqid invgSymGrp1N=invgSymGrp1N
36 26 17 35 symginv SBaseSymGrp1NinvgSymGrp1NS=S-1
37 34 36 syl φinvgSymGrp1NS=S-1
38 fzfid φ1NFin
39 26 symggrp 1NFinSymGrp1NGrp
40 38 39 syl φSymGrp1NGrp
41 17 35 grpinvcl SymGrp1NGrpSBaseSymGrp1NinvgSymGrp1NSBaseSymGrp1N
42 40 34 41 syl2anc φinvgSymGrp1NSBaseSymGrp1N
43 37 42 eqeltrrd φS-1BaseSymGrp1N
44 eqid +SymGrp1N=+SymGrp1N
45 26 17 44 symgov PBaseSymGrp1NS-1BaseSymGrp1NP+SymGrp1NS-1=PS-1
46 26 17 44 symgcl PBaseSymGrp1NS-1BaseSymGrp1NP+SymGrp1NS-1BaseSymGrp1N
47 45 46 eqeltrrd PBaseSymGrp1NS-1BaseSymGrp1NPS-1BaseSymGrp1N
48 28 43 47 syl2anc φPS-1BaseSymGrp1N
49 25 15 26 17 fzto1st J1NQBaseSymGrp1N
50 11 49 syl φQBaseSymGrp1N
51 25 16 26 17 fzto1st N1NTBaseSymGrp1N
52 32 51 syl φTBaseSymGrp1N
53 26 17 35 symginv TBaseSymGrp1NinvgSymGrp1NT=T-1
54 52 53 syl φinvgSymGrp1NT=T-1
55 17 35 grpinvcl SymGrp1NGrpTBaseSymGrp1NinvgSymGrp1NTBaseSymGrp1N
56 40 52 55 syl2anc φinvgSymGrp1NTBaseSymGrp1N
57 54 56 eqeltrrd φT-1BaseSymGrp1N
58 26 17 44 symgov QBaseSymGrp1NT-1BaseSymGrp1NQ+SymGrp1NT-1=QT-1
59 26 17 44 symgcl QBaseSymGrp1NT-1BaseSymGrp1NQ+SymGrp1NT-1BaseSymGrp1N
60 58 59 eqeltrrd QBaseSymGrp1NT-1BaseSymGrp1NQT-1BaseSymGrp1N
61 50 57 60 syl2anc φQT-1BaseSymGrp1N
62 26 17 symgbasf1o SBaseSymGrp1NS:1N1-1 onto1N
63 34 62 syl φS:1N1-1 onto1N
64 f1of1 S:1N1-1 onto1NS:1N1-11N
65 df-f1 S:1N1-11NS:1N1NFunS-1
66 65 simprbi S:1N1-11NFunS-1
67 63 64 66 3syl φFunS-1
68 f1ocnv S:1N1-1 onto1NS-1:1N1-1 onto1N
69 f1odm S-1:1N1-1 onto1NdomS-1=1N
70 63 68 69 3syl φdomS-1=1N
71 32 70 eleqtrrd φNdomS-1
72 fvco FunS-1NdomS-1PS-1N=PS-1N
73 67 71 72 syl2anc φPS-1N=PS-1N
74 25 14 26 17 fzto1stinvn N1NS-1N=1
75 32 74 syl φS-1N=1
76 75 fveq2d φPS-1N=P1
77 25 13 fzto1stfv1 I1NP1=I
78 10 77 syl φP1=I
79 73 76 78 3eqtrd φPS-1N=I
80 26 17 symgbasf1o TBaseSymGrp1NT:1N1-1 onto1N
81 52 80 syl φT:1N1-1 onto1N
82 f1of1 T:1N1-1 onto1NT:1N1-11N
83 df-f1 T:1N1-11NT:1N1NFunT-1
84 83 simprbi T:1N1-11NFunT-1
85 81 82 84 3syl φFunT-1
86 f1ocnv T:1N1-1 onto1NT-1:1N1-1 onto1N
87 f1odm T-1:1N1-1 onto1NdomT-1=1N
88 81 86 87 3syl φdomT-1=1N
89 32 88 eleqtrrd φNdomT-1
90 fvco FunT-1NdomT-1QT-1N=QT-1N
91 85 89 90 syl2anc φQT-1N=QT-1N
92 25 16 26 17 fzto1stinvn N1NT-1N=1
93 32 92 syl φT-1N=1
94 93 fveq2d φQT-1N=Q1
95 25 15 fzto1stfv1 J1NQ1=J
96 11 95 syl φQ1=J
97 91 94 96 3eqtrd φQT-1N=J
98 crngring RCRingRRing
99 9 98 syl φRRing
100 2 1 minmar1cl RRingMBI1NJ1NI1NminMatR1RMJB
101 99 12 10 11 100 syl22anc φI1NminMatR1RMJB
102 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 24 101 madjusmdetlem3 φIsubMat1I1NminMatR1RMJJ=NsubMat1k1N,l1NPS-1kI1NminMatR1RMJQT-1lN
103 1 2 3 4 5 6 7 8 9 10 11 12 17 18 19 24 48 61 79 97 102 madjusmdetlem1 φJKMI=ZpmSgn1NPS-1pmSgn1NQT-1·˙EIsubMat1MJ
104 26 18 17 psgnco 1NFinPBaseSymGrp1NS-1BaseSymGrp1NpmSgn1NPS-1=pmSgn1NPpmSgn1NS-1
105 38 28 43 104 syl3anc φpmSgn1NPS-1=pmSgn1NPpmSgn1NS-1
106 25 13 26 17 18 psgnfzto1st I1NpmSgn1NP=1I+1
107 10 106 syl φpmSgn1NP=1I+1
108 26 18 17 psgninv 1NFinSBaseSymGrp1NpmSgn1NS-1=pmSgn1NS
109 38 34 108 syl2anc φpmSgn1NS-1=pmSgn1NS
110 25 14 26 17 18 psgnfzto1st N1NpmSgn1NS=1N+1
111 32 110 syl φpmSgn1NS=1N+1
112 109 111 eqtrd φpmSgn1NS-1=1N+1
113 107 112 oveq12d φpmSgn1NPpmSgn1NS-1=1I+11N+1
114 105 113 eqtrd φpmSgn1NPS-1=1I+11N+1
115 26 18 17 psgnco 1NFinQBaseSymGrp1NT-1BaseSymGrp1NpmSgn1NQT-1=pmSgn1NQpmSgn1NT-1
116 38 50 57 115 syl3anc φpmSgn1NQT-1=pmSgn1NQpmSgn1NT-1
117 25 15 26 17 18 psgnfzto1st J1NpmSgn1NQ=1J+1
118 11 117 syl φpmSgn1NQ=1J+1
119 26 18 17 psgninv 1NFinTBaseSymGrp1NpmSgn1NT-1=pmSgn1NT
120 38 52 119 syl2anc φpmSgn1NT-1=pmSgn1NT
121 25 16 26 17 18 psgnfzto1st N1NpmSgn1NT=1N+1
122 32 121 syl φpmSgn1NT=1N+1
123 120 122 eqtrd φpmSgn1NT-1=1N+1
124 118 123 oveq12d φpmSgn1NQpmSgn1NT-1=1J+11N+1
125 116 124 eqtrd φpmSgn1NQT-1=1J+11N+1
126 114 125 oveq12d φpmSgn1NPS-1pmSgn1NQT-1=1I+11N+11J+11N+1
127 1cnd φ1
128 127 negcld φ1
129 fz1ssnn 1N
130 129 10 sselid φI
131 130 nnnn0d φI0
132 1nn0 10
133 132 a1i φ10
134 131 133 nn0addcld φI+10
135 128 134 expcld φ1I+1
136 8 nnnn0d φN0
137 136 133 nn0addcld φN+10
138 128 137 expcld φ1N+1
139 129 11 sselid φJ
140 139 nnnn0d φJ0
141 140 133 nn0addcld φJ+10
142 128 141 expcld φ1J+1
143 135 138 142 138 mul4d φ1I+11N+11J+11N+1=1I+11J+11N+11N+1
144 128 141 134 expaddd φ1I+1+J+1=1I+11J+1
145 130 nncnd φI
146 139 nncnd φJ
147 145 127 146 127 add4d φI+1+J+1=I+J+1+1
148 1p1e2 1+1=2
149 148 oveq2i I+J+1+1=I+J+2
150 147 149 eqtrdi φI+1+J+1=I+J+2
151 150 oveq2d φ1I+1+J+1=1I+J+2
152 2nn0 20
153 152 a1i φ20
154 131 140 nn0addcld φI+J0
155 128 153 154 expaddd φ1I+J+2=1I+J12
156 neg1sqe1 12=1
157 156 oveq2i 1I+J12=1I+J1
158 155 157 eqtrdi φ1I+J+2=1I+J1
159 128 154 expcld φ1I+J
160 159 mulridd φ1I+J1=1I+J
161 151 158 160 3eqtrd φ1I+1+J+1=1I+J
162 144 161 eqtr3d φ1I+11J+1=1I+J
163 137 nn0zd φN+1
164 m1expcl2 N+11N+111
165 1neg1t1neg1 1N+1111N+11N+1=1
166 163 164 165 3syl φ1N+11N+1=1
167 162 166 oveq12d φ1I+11J+11N+11N+1=1I+J1
168 143 167 160 3eqtrd φ1I+11N+11J+11N+1=1I+J
169 126 168 eqtrd φpmSgn1NPS-1pmSgn1NQT-1=1I+J
170 169 fveq2d φZpmSgn1NPS-1pmSgn1NQT-1=Z1I+J
171 170 oveq1d φZpmSgn1NPS-1pmSgn1NQT-1·˙EIsubMat1MJ=Z1I+J·˙EIsubMat1MJ
172 103 171 eqtrd φJKMI=Z1I+J·˙EIsubMat1MJ