Metamath Proof Explorer


Theorem mplsubrglem

Description: Lemma for mplsubrg . (Contributed by Mario Carneiro, 9-Jan-2015) (Revised by AV, 18-Jul-2019)

Ref Expression
Hypotheses mplsubg.s S=ImPwSerR
mplsubg.p P=ImPolyR
mplsubg.u U=BaseP
mplsubg.i φIW
mpllss.r φRRing
mplsubrglem.d D=f0I|f-1Fin
mplsubrglem.z 0˙=0R
mplsubrglem.p A=f+supp0˙X×supp0˙Y
mplsubrglem.t ·˙=R
mplsubrglem.x φXU
mplsubrglem.y φYU
Assertion mplsubrglem φXSYU

Proof

Step Hyp Ref Expression
1 mplsubg.s S=ImPwSerR
2 mplsubg.p P=ImPolyR
3 mplsubg.u U=BaseP
4 mplsubg.i φIW
5 mpllss.r φRRing
6 mplsubrglem.d D=f0I|f-1Fin
7 mplsubrglem.z 0˙=0R
8 mplsubrglem.p A=f+supp0˙X×supp0˙Y
9 mplsubrglem.t ·˙=R
10 mplsubrglem.x φXU
11 mplsubrglem.y φYU
12 eqid BaseS=BaseS
13 eqid S=S
14 2 1 3 12 mplbasss UBaseS
15 14 10 sselid φXBaseS
16 14 11 sselid φYBaseS
17 1 12 13 5 15 16 psrmulcl φXSYBaseS
18 ovexd φXSYV
19 1 12 psrelbasfun XSYBaseSFunXSY
20 17 19 syl φFunXSY
21 7 fvexi 0˙V
22 21 a1i φ0˙V
23 df-ima f+supp0˙X×supp0˙Y=ranf+supp0˙X×supp0˙Y
24 8 23 eqtri A=ranf+supp0˙X×supp0˙Y
25 2 1 12 7 3 mplelbas XUXBaseSfinSupp0˙X
26 25 simprbi XUfinSupp0˙X
27 10 26 syl φfinSupp0˙X
28 2 1 12 7 3 mplelbas YUYBaseSfinSupp0˙Y
29 28 simprbi YUfinSupp0˙Y
30 11 29 syl φfinSupp0˙Y
31 fsuppxpfi finSupp0˙XfinSupp0˙Ysupp0˙X×supp0˙YFin
32 27 30 31 syl2anc φsupp0˙X×supp0˙YFin
33 ofmres f+supp0˙X×supp0˙Y=fsupp0˙X,gsupp0˙Yf+fg
34 ovex f+fgV
35 33 34 fnmpoi f+supp0˙X×supp0˙YFnsupp0˙X×supp0˙Y
36 dffn4 f+supp0˙X×supp0˙YFnsupp0˙X×supp0˙Yf+supp0˙X×supp0˙Y:supp0˙X×supp0˙Yontoranf+supp0˙X×supp0˙Y
37 35 36 mpbi f+supp0˙X×supp0˙Y:supp0˙X×supp0˙Yontoranf+supp0˙X×supp0˙Y
38 fofi supp0˙X×supp0˙YFinf+supp0˙X×supp0˙Y:supp0˙X×supp0˙Yontoranf+supp0˙X×supp0˙Yranf+supp0˙X×supp0˙YFin
39 32 37 38 sylancl φranf+supp0˙X×supp0˙YFin
40 24 39 eqeltrid φAFin
41 eqid BaseR=BaseR
42 1 41 6 12 17 psrelbas φXSY:DBaseR
43 15 adantr φkDAXBaseS
44 16 adantr φkDAYBaseS
45 eldifi kDAkD
46 45 adantl φkDAkD
47 1 12 9 13 6 43 44 46 psrmulval φkDAXSYk=RxyD|yfkXx·˙Ykfx
48 5 ad2antrr φkDAxyD|yfkRRing
49 2 41 3 6 11 mplelf φY:DBaseR
50 49 ad2antrr φkDAxyD|yfkY:DBaseR
51 ssrab2 yD|yfkD
52 46 adantr φkDAxyD|yfkkD
53 simpr φkDAxyD|yfkxyD|yfk
54 eqid yD|yfk=yD|yfk
55 6 54 psrbagconcl kDxyD|yfkkfxyD|yfk
56 52 53 55 syl2anc φkDAxyD|yfkkfxyD|yfk
57 51 56 sselid φkDAxyD|yfkkfxD
58 50 57 ffvelcdmd φkDAxyD|yfkYkfxBaseR
59 41 9 7 ringlz RRingYkfxBaseR0˙·˙Ykfx=0˙
60 48 58 59 syl2anc φkDAxyD|yfk0˙·˙Ykfx=0˙
61 oveq1 Xx=0˙Xx·˙Ykfx=0˙·˙Ykfx
62 61 eqeq1d Xx=0˙Xx·˙Ykfx=0˙0˙·˙Ykfx=0˙
63 60 62 syl5ibrcom φkDAxyD|yfkXx=0˙Xx·˙Ykfx=0˙
64 2 41 3 6 10 mplelf φX:DBaseR
65 64 ad2antrr φkDAxyD|yfkX:DBaseR
66 51 53 sselid φkDAxyD|yfkxD
67 65 66 ffvelcdmd φkDAxyD|yfkXxBaseR
68 41 9 7 ringrz RRingXxBaseRXx·˙0˙=0˙
69 48 67 68 syl2anc φkDAxyD|yfkXx·˙0˙=0˙
70 oveq2 Ykfx=0˙Xx·˙Ykfx=Xx·˙0˙
71 70 eqeq1d Ykfx=0˙Xx·˙Ykfx=0˙Xx·˙0˙=0˙
72 69 71 syl5ibrcom φkDAxyD|yfkYkfx=0˙Xx·˙Ykfx=0˙
73 6 psrbagf xDx:I0
74 66 73 syl φkDAxyD|yfkx:I0
75 74 ffvelcdmda φkDAxyD|yfknIxn0
76 6 psrbagf kDk:I0
77 52 76 syl φkDAxyD|yfkk:I0
78 77 ffvelcdmda φkDAxyD|yfknIkn0
79 nn0cn xn0xn
80 nn0cn kn0kn
81 pncan3 xnknxn+kn-xn=kn
82 79 80 81 syl2an xn0kn0xn+kn-xn=kn
83 75 78 82 syl2anc φkDAxyD|yfknIxn+kn-xn=kn
84 83 mpteq2dva φkDAxyD|yfknIxn+kn-xn=nIkn
85 4 ad2antrr φkDAxyD|yfkIW
86 ovexd φkDAxyD|yfknIknxnV
87 74 feqmptd φkDAxyD|yfkx=nIxn
88 77 feqmptd φkDAxyD|yfkk=nIkn
89 85 78 75 88 87 offval2 φkDAxyD|yfkkfx=nIknxn
90 85 75 86 87 89 offval2 φkDAxyD|yfkx+fkfx=nIxn+kn-xn
91 84 90 88 3eqtr4d φkDAxyD|yfkx+fkfx=k
92 simplr φkDAxyD|yfkkDA
93 91 92 eqeltrd φkDAxyD|yfkx+fkfxDA
94 93 eldifbd φkDAxyD|yfk¬x+fkfxA
95 ovres xsupp0˙Xkfxsupp0˙Yxf+supp0˙X×supp0˙Ykfx=x+fkfx
96 fnovrn f+supp0˙X×supp0˙YFnsupp0˙X×supp0˙Yxsupp0˙Xkfxsupp0˙Yxf+supp0˙X×supp0˙Ykfxranf+supp0˙X×supp0˙Y
97 96 24 eleqtrrdi f+supp0˙X×supp0˙YFnsupp0˙X×supp0˙Yxsupp0˙Xkfxsupp0˙Yxf+supp0˙X×supp0˙YkfxA
98 35 97 mp3an1 xsupp0˙Xkfxsupp0˙Yxf+supp0˙X×supp0˙YkfxA
99 95 98 eqeltrrd xsupp0˙Xkfxsupp0˙Yx+fkfxA
100 94 99 nsyl φkDAxyD|yfk¬xsupp0˙Xkfxsupp0˙Y
101 ianor ¬xsupp0˙Xkfxsupp0˙Y¬xsupp0˙X¬kfxsupp0˙Y
102 100 101 sylib φkDAxyD|yfk¬xsupp0˙X¬kfxsupp0˙Y
103 eldif xDsupp0˙XxD¬xsupp0˙X
104 103 baib xDxDsupp0˙X¬xsupp0˙X
105 66 104 syl φkDAxyD|yfkxDsupp0˙X¬xsupp0˙X
106 ssidd φkDAxyD|yfkXsupp0˙Xsupp0˙
107 ovex 0IV
108 6 107 rabex2 DV
109 108 a1i φkDAxyD|yfkDV
110 21 a1i φkDAxyD|yfk0˙V
111 65 106 109 110 suppssr φkDAxyD|yfkxDsupp0˙XXx=0˙
112 111 ex φkDAxyD|yfkxDsupp0˙XXx=0˙
113 105 112 sylbird φkDAxyD|yfk¬xsupp0˙XXx=0˙
114 eldif kfxDsupp0˙YkfxD¬kfxsupp0˙Y
115 114 baib kfxDkfxDsupp0˙Y¬kfxsupp0˙Y
116 57 115 syl φkDAxyD|yfkkfxDsupp0˙Y¬kfxsupp0˙Y
117 ssidd φkDAxyD|yfkYsupp0˙Ysupp0˙
118 50 117 109 110 suppssr φkDAxyD|yfkkfxDsupp0˙YYkfx=0˙
119 118 ex φkDAxyD|yfkkfxDsupp0˙YYkfx=0˙
120 116 119 sylbird φkDAxyD|yfk¬kfxsupp0˙YYkfx=0˙
121 113 120 orim12d φkDAxyD|yfk¬xsupp0˙X¬kfxsupp0˙YXx=0˙Ykfx=0˙
122 102 121 mpd φkDAxyD|yfkXx=0˙Ykfx=0˙
123 63 72 122 mpjaod φkDAxyD|yfkXx·˙Ykfx=0˙
124 123 mpteq2dva φkDAxyD|yfkXx·˙Ykfx=xyD|yfk0˙
125 124 oveq2d φkDARxyD|yfkXx·˙Ykfx=RxyD|yfk0˙
126 5 adantr φkDARRing
127 ringmnd RRingRMnd
128 126 127 syl φkDARMnd
129 6 psrbaglefi kDyD|yfkFin
130 46 129 syl φkDAyD|yfkFin
131 7 gsumz RMndyD|yfkFinRxyD|yfk0˙=0˙
132 128 130 131 syl2anc φkDARxyD|yfk0˙=0˙
133 47 125 132 3eqtrd φkDAXSYk=0˙
134 42 133 suppss φXSYsupp0˙A
135 suppssfifsupp XSYVFunXSY0˙VAFinXSYsupp0˙AfinSupp0˙XSY
136 18 20 22 40 134 135 syl32anc φfinSupp0˙XSY
137 2 1 12 7 3 mplelbas XSYUXSYBaseSfinSupp0˙XSY
138 17 136 137 sylanbrc φXSYU