Metamath Proof Explorer


Theorem mtest

Description: The Weierstrass M-test. If F is a sequence of functions which are uniformly bounded by the convergent sequence M ( k ) , then the series generated by the sequence F converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses mtest.z Z=N
mtest.n φN
mtest.s φSV
mtest.f φF:ZS
mtest.m φMW
mtest.c φkZMk
mtest.l φkZzSFkzMk
mtest.d φseqN+Mdom
Assertion mtest φseqNf+FdomuS

Proof

Step Hyp Ref Expression
1 mtest.z Z=N
2 mtest.n φN
3 mtest.s φSV
4 mtest.f φF:ZS
5 mtest.m φMW
6 mtest.c φkZMk
7 mtest.l φkZzSFkzMk
8 mtest.d φseqN+Mdom
9 1 climcau NseqN+Mdomr+jZijseqN+MiseqN+Mj<r
10 2 8 9 syl2anc φr+jZijseqN+MiseqN+Mj<r
11 seqfn NseqNf+FFnN
12 2 11 syl φseqNf+FFnN
13 1 fneq2i seqNf+FFnZseqNf+FFnN
14 12 13 sylibr φseqNf+FFnZ
15 3 elexd φSV
16 15 adantr φiZSV
17 simpr φiZiZ
18 17 1 eleqtrdi φiZiN
19 4 adantr φiZF:ZS
20 elfzuz kNikN
21 20 1 eleqtrrdi kNikZ
22 ffvelcdm F:ZSkZFkS
23 19 21 22 syl2an φiZkNiFkS
24 elmapi FkSFk:S
25 23 24 syl φiZkNiFk:S
26 25 feqmptd φiZkNiFk=zSFkz
27 21 adantl φiZkNikZ
28 fveq2 n=kFn=Fk
29 28 fveq1d n=kFnz=Fkz
30 eqid nZFnz=nZFnz
31 fvex FkzV
32 29 30 31 fvmpt kZnZFnzk=Fkz
33 27 32 syl φiZkNinZFnzk=Fkz
34 33 mpteq2dv φiZkNizSnZFnzk=zSFkz
35 26 34 eqtr4d φiZkNiFk=zSnZFnzk
36 16 18 35 seqof φiZseqNf+Fi=zSseqN+nZFnzi
37 2 adantr φzSN
38 4 ffvelcdmda φnZFnS
39 elmapi FnSFn:S
40 38 39 syl φnZFn:S
41 40 ffvelcdmda φnZzSFnz
42 41 an32s φzSnZFnz
43 42 fmpttd φzSnZFnz:Z
44 43 ffvelcdmda φzSiZnZFnzi
45 1 37 44 serf φzSseqN+nZFnz:Z
46 45 ffvelcdmda φzSiZseqN+nZFnzi
47 46 an32s φiZzSseqN+nZFnzi
48 47 fmpttd φiZzSseqN+nZFnzi:S
49 cnex V
50 elmapg VSVzSseqN+nZFnziSzSseqN+nZFnzi:S
51 49 16 50 sylancr φiZzSseqN+nZFnziSzSseqN+nZFnzi:S
52 48 51 mpbird φiZzSseqN+nZFnziS
53 36 52 eqeltrd φiZseqNf+FiS
54 53 ralrimiva φiZseqNf+FiS
55 ffnfv seqNf+F:ZSseqNf+FFnZiZseqNf+FiS
56 14 54 55 sylanbrc φseqNf+F:ZS
57 56 ad2antrr φr+jZijseqNf+F:ZS
58 1 uztrn2 jZijiZ
59 58 adantl φr+jZijiZ
60 57 59 ffvelcdmd φr+jZijseqNf+FiS
61 elmapi seqNf+FiSseqNf+Fi:S
62 60 61 syl φr+jZijseqNf+Fi:S
63 62 ffvelcdmda φr+jZijzSseqNf+Fiz
64 simprl φr+jZijjZ
65 57 64 ffvelcdmd φr+jZijseqNf+FjS
66 elmapi seqNf+FjSseqNf+Fj:S
67 65 66 syl φr+jZijseqNf+Fj:S
68 67 ffvelcdmda φr+jZijzSseqNf+Fjz
69 63 68 subcld φr+jZijzSseqNf+FizseqNf+Fjz
70 69 abscld φr+jZijzSseqNf+FizseqNf+Fjz
71 fzfid φr+jZijzSj+1iFin
72 ssun2 j+1iNjj+1i
73 64 1 eleqtrdi φr+jZijjN
74 simprr φr+jZijij
75 elfzuzb jNijNij
76 73 74 75 sylanbrc φr+jZijjNi
77 fzsplit jNiNi=Njj+1i
78 76 77 syl φr+jZijNi=Njj+1i
79 72 78 sseqtrrid φr+jZijj+1iNi
80 79 sselda φr+jZijkj+1ikNi
81 80 adantlr φr+jZijzSkj+1ikNi
82 4 ad2antrr φr+jZijF:ZS
83 82 21 22 syl2an φr+jZijkNiFkS
84 83 24 syl φr+jZijkNiFk:S
85 84 ffvelcdmda φr+jZijkNizSFkz
86 85 an32s φr+jZijzSkNiFkz
87 81 86 syldan φr+jZijzSkj+1iFkz
88 87 abscld φr+jZijzSkj+1iFkz
89 71 88 fsumrecl φr+jZijzSk=j+1iFkz
90 1 2 6 serfre φseqN+M:Z
91 90 ad2antrr φr+jZijseqN+M:Z
92 91 59 ffvelcdmd φr+jZijseqN+Mi
93 91 64 ffvelcdmd φr+jZijseqN+Mj
94 92 93 resubcld φr+jZijseqN+MiseqN+Mj
95 94 recnd φr+jZijseqN+MiseqN+Mj
96 95 abscld φr+jZijseqN+MiseqN+Mj
97 96 adantr φr+jZijzSseqN+MiseqN+Mj
98 58 36 sylan2 φjZijseqNf+Fi=zSseqN+nZFnzi
99 98 adantlr φr+jZijseqNf+Fi=zSseqN+nZFnzi
100 99 fveq1d φr+jZijseqNf+Fiz=zSseqN+nZFnziz
101 fvex seqN+nZFnziV
102 eqid zSseqN+nZFnzi=zSseqN+nZFnzi
103 102 fvmpt2 zSseqN+nZFnziVzSseqN+nZFnziz=seqN+nZFnzi
104 101 103 mpan2 zSzSseqN+nZFnziz=seqN+nZFnzi
105 100 104 sylan9eq φr+jZijzSseqNf+Fiz=seqN+nZFnzi
106 fveq2 i=jseqNf+Fi=seqNf+Fj
107 fveq2 i=jseqN+nZFnzi=seqN+nZFnzj
108 107 mpteq2dv i=jzSseqN+nZFnzi=zSseqN+nZFnzj
109 106 108 eqeq12d i=jseqNf+Fi=zSseqN+nZFnziseqNf+Fj=zSseqN+nZFnzj
110 36 ralrimiva φiZseqNf+Fi=zSseqN+nZFnzi
111 110 ad2antrr φr+jZijiZseqNf+Fi=zSseqN+nZFnzi
112 109 111 64 rspcdva φr+jZijseqNf+Fj=zSseqN+nZFnzj
113 112 fveq1d φr+jZijseqNf+Fjz=zSseqN+nZFnzjz
114 fvex seqN+nZFnzjV
115 eqid zSseqN+nZFnzj=zSseqN+nZFnzj
116 115 fvmpt2 zSseqN+nZFnzjVzSseqN+nZFnzjz=seqN+nZFnzj
117 114 116 mpan2 zSzSseqN+nZFnzjz=seqN+nZFnzj
118 113 117 sylan9eq φr+jZijzSseqNf+Fjz=seqN+nZFnzj
119 105 118 oveq12d φr+jZijzSseqNf+FizseqNf+Fjz=seqN+nZFnziseqN+nZFnzj
120 21 adantl φr+jZijzSkNikZ
121 120 32 syl φr+jZijzSkNinZFnzk=Fkz
122 59 adantr φr+jZijzSiZ
123 122 1 eleqtrdi φr+jZijzSiN
124 121 123 86 fsumser φr+jZijzSk=NiFkz=seqN+nZFnzi
125 elfzuz kNjkN
126 125 1 eleqtrrdi kNjkZ
127 126 adantl φr+jZijzSkNjkZ
128 127 32 syl φr+jZijzSkNjnZFnzk=Fkz
129 64 adantr φr+jZijzSjZ
130 129 1 eleqtrdi φr+jZijzSjN
131 82 126 22 syl2an φr+jZijkNjFkS
132 131 24 syl φr+jZijkNjFk:S
133 132 ffvelcdmda φr+jZijkNjzSFkz
134 133 an32s φr+jZijzSkNjFkz
135 128 130 134 fsumser φr+jZijzSk=NjFkz=seqN+nZFnzj
136 124 135 oveq12d φr+jZijzSk=NiFkzk=NjFkz=seqN+nZFnziseqN+nZFnzj
137 fzfid φr+jZijzSNjFin
138 137 134 fsumcl φr+jZijzSk=NjFkz
139 71 87 fsumcl φr+jZijzSk=j+1iFkz
140 eluzelre jNj
141 73 140 syl φr+jZijj
142 141 ltp1d φr+jZijj<j+1
143 fzdisj j<j+1Njj+1i=
144 142 143 syl φr+jZijNjj+1i=
145 144 adantr φr+jZijzSNjj+1i=
146 78 adantr φr+jZijzSNi=Njj+1i
147 fzfid φr+jZijzSNiFin
148 145 146 147 86 fsumsplit φr+jZijzSk=NiFkz=k=NjFkz+k=j+1iFkz
149 138 139 148 mvrladdd φr+jZijzSk=NiFkzk=NjFkz=k=j+1iFkz
150 119 136 149 3eqtr2d φr+jZijzSseqNf+FizseqNf+Fjz=k=j+1iFkz
151 150 fveq2d φr+jZijzSseqNf+FizseqNf+Fjz=k=j+1iFkz
152 71 87 fsumabs φr+jZijzSk=j+1iFkzk=j+1iFkz
153 151 152 eqbrtrd φr+jZijzSseqNf+FizseqNf+Fjzk=j+1iFkz
154 simpll φr+jZijφ
155 154 21 6 syl2an φr+jZijkNiMk
156 80 155 syldan φr+jZijkj+1iMk
157 156 adantlr φr+jZijzSkj+1iMk
158 81 21 syl φr+jZijzSkj+1ikZ
159 7 ad4ant14 φr+jZijkZzSFkzMk
160 159 anass1rs φr+jZijzSkZFkzMk
161 158 160 syldan φr+jZijzSkj+1iFkzMk
162 71 88 157 161 fsumle φr+jZijzSk=j+1iFkzk=j+1iMk
163 eqidd φr+jZijkNiMk=Mk
164 59 1 eleqtrdi φr+jZijiN
165 155 recnd φr+jZijkNiMk
166 163 164 165 fsumser φr+jZijk=NiMk=seqN+Mi
167 eqidd φr+jZijkNjMk=Mk
168 154 126 6 syl2an φr+jZijkNjMk
169 168 recnd φr+jZijkNjMk
170 167 73 169 fsumser φr+jZijk=NjMk=seqN+Mj
171 166 170 oveq12d φr+jZijk=NiMkk=NjMk=seqN+MiseqN+Mj
172 fzfid φr+jZijNjFin
173 172 169 fsumcl φr+jZijk=NjMk
174 fzfid φr+jZijj+1iFin
175 80 165 syldan φr+jZijkj+1iMk
176 174 175 fsumcl φr+jZijk=j+1iMk
177 fzfid φr+jZijNiFin
178 144 78 177 165 fsumsplit φr+jZijk=NiMk=k=NjMk+k=j+1iMk
179 173 176 178 mvrladdd φr+jZijk=NiMkk=NjMk=k=j+1iMk
180 171 179 eqtr3d φr+jZijseqN+MiseqN+Mj=k=j+1iMk
181 180 fveq2d φr+jZijseqN+MiseqN+Mj=k=j+1iMk
182 181 adantr φr+jZijzSseqN+MiseqN+Mj=k=j+1iMk
183 180 94 eqeltrrd φr+jZijk=j+1iMk
184 183 adantr φr+jZijzSk=j+1iMk
185 0red φr+jZijzSkj+1i0
186 87 absge0d φr+jZijzSkj+1i0Fkz
187 185 88 157 186 161 letrd φr+jZijzSkj+1i0Mk
188 71 157 187 fsumge0 φr+jZijzS0k=j+1iMk
189 184 188 absidd φr+jZijzSk=j+1iMk=k=j+1iMk
190 182 189 eqtrd φr+jZijzSseqN+MiseqN+Mj=k=j+1iMk
191 162 190 breqtrrd φr+jZijzSk=j+1iFkzseqN+MiseqN+Mj
192 70 89 97 153 191 letrd φr+jZijzSseqNf+FizseqNf+FjzseqN+MiseqN+Mj
193 simpllr φr+jZijzSr+
194 193 rpred φr+jZijzSr
195 lelttr seqNf+FizseqNf+FjzseqN+MiseqN+MjrseqNf+FizseqNf+FjzseqN+MiseqN+MjseqN+MiseqN+Mj<rseqNf+FizseqNf+Fjz<r
196 70 97 194 195 syl3anc φr+jZijzSseqNf+FizseqNf+FjzseqN+MiseqN+MjseqN+MiseqN+Mj<rseqNf+FizseqNf+Fjz<r
197 192 196 mpand φr+jZijzSseqN+MiseqN+Mj<rseqNf+FizseqNf+Fjz<r
198 197 ralrimdva φr+jZijseqN+MiseqN+Mj<rzSseqNf+FizseqNf+Fjz<r
199 198 anassrs φr+jZijseqN+MiseqN+Mj<rzSseqNf+FizseqNf+Fjz<r
200 199 ralimdva φr+jZijseqN+MiseqN+Mj<rijzSseqNf+FizseqNf+Fjz<r
201 200 reximdva φr+jZijseqN+MiseqN+Mj<rjZijzSseqNf+FizseqNf+Fjz<r
202 201 ralimdva φr+jZijseqN+MiseqN+Mj<rr+jZijzSseqNf+FizseqNf+Fjz<r
203 10 202 mpd φr+jZijzSseqNf+FizseqNf+Fjz<r
204 1 2 3 56 ulmcau φseqNf+FdomuSr+jZijzSseqNf+FizseqNf+Fjz<r
205 203 204 mpbird φseqNf+FdomuS