Metamath Proof Explorer


Theorem mudivsum

Description: Asymptotic formula for sum_ n <_ x , mmu ( n ) / n = O(1) . Equation 10.2.1 of Shapiro, p. 405. (Contributed by Mario Carneiro, 14-May-2016)

Ref Expression
Assertion mudivsum x+n=1xμnn𝑂1

Proof

Step Hyp Ref Expression
1 1red 1
2 reex V
3 rpssre +
4 2 3 ssexi +V
5 4 a1i +V
6 fzfid x+1xFin
7 rpre x+x
8 elfznn n1xn
9 nndivre xnxn
10 7 8 9 syl2an x+n1xxn
11 10 recnd x+n1xxn
12 reflcl xnxn
13 10 12 syl x+n1xxn
14 13 recnd x+n1xxn
15 11 14 subcld x+n1xxnxn
16 8 adantl x+n1xn
17 mucl nμn
18 16 17 syl x+n1xμn
19 18 zcnd x+n1xμn
20 15 19 mulcld x+n1xxnxnμn
21 6 20 fsumcl x+n=1xxnxnμn
22 rpcn x+x
23 rpne0 x+x0
24 21 22 23 divcld x+n=1xxnxnμnx
25 24 adantl x+n=1xxnxnμnx
26 ovexd x+1xV
27 eqidd x+n=1xxnxnμnx=x+n=1xxnxnμnx
28 eqidd x+1x=x+1x
29 5 25 26 27 28 offval2 x+n=1xxnxnμnx+fx+1x=x+n=1xxnxnμnx+1x
30 3 a1i +
31 21 adantr x+1xn=1xxnxnμn
32 22 adantr x+1xx
33 23 adantr x+1xx0
34 31 32 33 absdivd x+1xn=1xxnxnμnx=n=1xxnxnμnx
35 rprege0 x+x0x
36 absid x0xx=x
37 35 36 syl x+x=x
38 37 adantr x+1xx=x
39 38 oveq2d x+1xn=1xxnxnμnx=n=1xxnxnμnx
40 34 39 eqtrd x+1xn=1xxnxnμnx=n=1xxnxnμnx
41 31 abscld x+1xn=1xxnxnμn
42 fzfid x+1x1xFin
43 20 adantlr x+1xn1xxnxnμn
44 43 abscld x+1xn1xxnxnμn
45 42 44 fsumrecl x+1xn=1xxnxnμn
46 7 adantr x+1xx
47 42 43 fsumabs x+1xn=1xxnxnμnn=1xxnxnμn
48 reflcl xx
49 46 48 syl x+1xx
50 1red x+1xn1x1
51 15 adantlr x+1xn1xxnxn
52 fz1ssnn 1x
53 52 a1i x+1x1x
54 53 sselda x+1xn1xn
55 54 17 syl x+1xn1xμn
56 55 zcnd x+1xn1xμn
57 51 56 absmuld x+1xn1xxnxnμn=xnxnμn
58 51 abscld x+1xn1xxnxn
59 56 abscld x+1xn1xμn
60 51 absge0d x+1xn1x0xnxn
61 56 absge0d x+1xn1x0μn
62 simpl x+1xx+
63 8 nnrpd n1xn+
64 rpdivcl x+n+xn+
65 62 63 64 syl2an x+1xn1xxn+
66 3 65 sselid x+1xn1xxn
67 66 12 syl x+1xn1xxn
68 flle xnxnxn
69 66 68 syl x+1xn1xxnxn
70 67 66 69 abssubge0d x+1xn1xxnxn=xnxn
71 fracle1 xnxnxn1
72 66 71 syl x+1xn1xxnxn1
73 70 72 eqbrtrd x+1xn1xxnxn1
74 mule1 nμn1
75 54 74 syl x+1xn1xμn1
76 58 50 59 50 60 61 73 75 lemul12ad x+1xn1xxnxnμn11
77 1t1e1 11=1
78 76 77 breqtrdi x+1xn1xxnxnμn1
79 57 78 eqbrtrd x+1xn1xxnxnμn1
80 42 44 50 79 fsumle x+1xn=1xxnxnμnn=1x1
81 1cnd x+1x1
82 fsumconst 1xFin1n=1x1=1x1
83 42 81 82 syl2anc x+1xn=1x1=1x1
84 flge1nn x1xx
85 7 84 sylan x+1xx
86 85 nnnn0d x+1xx0
87 hashfz1 x01x=x
88 86 87 syl x+1x1x=x
89 88 oveq1d x+1x1x1=x1
90 49 recnd x+1xx
91 90 mulridd x+1xx1=x
92 83 89 91 3eqtrd x+1xn=1x1=x
93 80 92 breqtrd x+1xn=1xxnxnμnx
94 flle xxx
95 46 94 syl x+1xxx
96 45 49 46 93 95 letrd x+1xn=1xxnxnμnx
97 41 45 46 47 96 letrd x+1xn=1xxnxnμnx
98 32 mulridd x+1xx1=x
99 97 98 breqtrrd x+1xn=1xxnxnμnx1
100 1red x+1x1
101 41 100 62 ledivmuld x+1xn=1xxnxnμnx1n=1xxnxnμnx1
102 99 101 mpbird x+1xn=1xxnxnμnx1
103 40 102 eqbrtrd x+1xn=1xxnxnμnx1
104 103 adantl x+1xn=1xxnxnμnx1
105 30 25 1 1 104 elo1d x+n=1xxnxnμnx𝑂1
106 ax-1cn 1
107 divrcnv 1x+1x0
108 106 107 ax-mp x+1x0
109 rlimo1 x+1x0x+1x𝑂1
110 108 109 mp1i x+1x𝑂1
111 o1add x+n=1xxnxnμnx𝑂1x+1x𝑂1x+n=1xxnxnμnx+fx+1x𝑂1
112 105 110 111 syl2anc x+n=1xxnxnμnx+fx+1x𝑂1
113 29 112 eqeltrrd x+n=1xxnxnμnx+1x𝑂1
114 ovexd x+n=1xxnxnμnx+1xV
115 18 zred x+n1xμn
116 115 16 nndivred x+n1xμnn
117 116 recnd x+n1xμnn
118 6 117 fsumcl x+n=1xμnn
119 118 adantl x+n=1xμnn
120 118 adantr x+1xn=1xμnn
121 120 abscld x+1xn=1xμnn
122 117 adantlr x+1xn1xμnn
123 42 32 122 fsummulc2 x+1xxn=1xμnn=n=1xxμnn
124 14 19 mulcld x+n1xxnμn
125 124 adantlr x+1xn1xxnμn
126 42 43 125 fsumadd x+1xn=1xxnxnμn+xnμn=n=1xxnxnμn+n=1xxnμn
127 11 adantlr x+1xn1xxn
128 14 adantlr x+1xn1xxn
129 127 128 npcand x+1xn1xxn-xn+xn=xn
130 129 oveq1d x+1xn1xxn-xn+xnμn=xnμn
131 51 128 56 adddird x+1xn1xxn-xn+xnμn=xnxnμn+xnμn
132 32 adantr x+1xn1xx
133 54 nnrpd x+1xn1xn+
134 rpcnne0 n+nn0
135 133 134 syl x+1xn1xnn0
136 div23 xμnnn0xμnn=xnμn
137 divass xμnnn0xμnn=xμnn
138 136 137 eqtr3d xμnnn0xnμn=xμnn
139 132 56 135 138 syl3anc x+1xn1xxnμn=xμnn
140 130 131 139 3eqtr3d x+1xn1xxnxnμn+xnμn=xμnn
141 140 sumeq2dv x+1xn=1xxnxnμn+xnμn=n=1xxμnn
142 eqidd k=nmμn=μn
143 ssrab2 y|yk
144 simprr x+1xk1xny|ykny|yk
145 143 144 sselid x+1xk1xny|ykn
146 145 17 syl x+1xk1xny|ykμn
147 146 zcnd x+1xk1xny|ykμn
148 142 46 147 dvdsflsumcom x+1xk=1xny|ykμn=n=1xm=1xnμn
149 147 3impb x+1xk1xny|ykμn
150 149 mulridd x+1xk1xny|ykμn1=μn
151 150 2sumeq2dv x+1xk=1xny|ykμn1=k=1xny|ykμn
152 eqidd k=11=1
153 nnuz =1
154 85 153 eleqtrdi x+1xx1
155 eluzfz1 x111x
156 154 155 syl x+1x11x
157 1cnd x+1xk1x1
158 152 42 53 156 157 musumsum x+1xk=1xny|ykμn1=1
159 151 158 eqtr3d x+1xk=1xny|ykμn=1
160 fzfid x+1xn1x1xnFin
161 fsumconst 1xnFinμnm=1xnμn=1xnμn
162 160 56 161 syl2anc x+1xn1xm=1xnμn=1xnμn
163 rprege0 xn+xn0xn
164 flge0nn0 xn0xnxn0
165 hashfz1 xn01xn=xn
166 65 163 164 165 4syl x+1xn1x1xn=xn
167 166 oveq1d x+1xn1x1xnμn=xnμn
168 162 167 eqtrd x+1xn1xm=1xnμn=xnμn
169 168 sumeq2dv x+1xn=1xm=1xnμn=n=1xxnμn
170 148 159 169 3eqtr3rd x+1xn=1xxnμn=1
171 170 oveq2d x+1xn=1xxnxnμn+n=1xxnμn=n=1xxnxnμn+1
172 126 141 171 3eqtr3d x+1xn=1xxμnn=n=1xxnxnμn+1
173 123 172 eqtrd x+1xxn=1xμnn=n=1xxnxnμn+1
174 173 oveq1d x+1xxn=1xμnnx=n=1xxnxnμn+1x
175 120 32 33 divcan3d x+1xxn=1xμnnx=n=1xμnn
176 rpcnne0 x+xx0
177 176 adantr x+1xxx0
178 divdir n=1xxnxnμn1xx0n=1xxnxnμn+1x=n=1xxnxnμnx+1x
179 31 81 177 178 syl3anc x+1xn=1xxnxnμn+1x=n=1xxnxnμnx+1x
180 174 175 179 3eqtr3d x+1xn=1xμnn=n=1xxnxnμnx+1x
181 180 fveq2d x+1xn=1xμnn=n=1xxnxnμnx+1x
182 121 181 eqled x+1xn=1xμnnn=1xxnxnμnx+1x
183 182 adantl x+1xn=1xμnnn=1xxnxnμnx+1x
184 1 113 114 119 183 o1le x+n=1xμnn𝑂1
185 184 mptru x+n=1xμnn𝑂1