Metamath Proof Explorer


Theorem noetasuplem4

Description: Lemma for noeta . When A and B are separated, then Z is a lower bound for B . Part of Theorem 5.1 of Lipparini p. 7-8. (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Hypotheses noetasuplem.1 S=ifxAyA¬x<syιxA|yA¬x<sydomιxA|yA¬x<sy2𝑜gy|uAydomuvA¬v<suusucy=vsucyιx|uAgdomuvA¬v<suusucg=vsucgug=x
noetasuplem.2 Z=SsucbdayBdomS×1𝑜
Assertion noetasuplem4 ANoAVBNoBVaAbBa<sbbBZ<sb

Proof

Step Hyp Ref Expression
1 noetasuplem.1 S=ifxAyA¬x<syιxA|yA¬x<sydomιxA|yA¬x<sy2𝑜gy|uAydomuvA¬v<suusucy=vsucyιx|uAgdomuvA¬v<suusucg=vsucgug=x
2 noetasuplem.2 Z=SsucbdayBdomS×1𝑜
3 ralcom aAbBa<sbbBaAa<sb
4 simplll ANoAVBNoBVbBANo
5 simpllr ANoAVBNoBVbBAV
6 simprl ANoAVBNoBVBNo
7 6 sselda ANoAVBNoBVbBbNo
8 1 nosupbnd2 ANoAVbNoaAa<sb¬bdomS<sS
9 4 5 7 8 syl3anc ANoAVBNoBVbBaAa<sb¬bdomS<sS
10 simpl bB¬bdomS<sSbB
11 ssel2 BNobBbNo
12 6 10 11 syl2an ANoAVBNoBVbB¬bdomS<sSbNo
13 nodmord bNoOrddomb
14 ordirr Orddomb¬dombdomb
15 12 13 14 3syl ANoAVBNoBVbB¬bdomS<sS¬dombdomb
16 ssun2 sucbdayBdomSsucbdayB
17 bdayval bNobdayb=domb
18 12 17 syl ANoAVBNoBVbB¬bdomS<sSbdayb=domb
19 bdayfo bday:NoontoOn
20 fofn bday:NoontoOnbdayFnNo
21 19 20 ax-mp bdayFnNo
22 fnfvima bdayFnNoBNobBbdaybbdayB
23 21 22 mp3an1 BNobBbdaybbdayB
24 6 10 23 syl2an ANoAVBNoBVbB¬bdomS<sSbdaybbdayB
25 18 24 eqeltrrd ANoAVBNoBVbB¬bdomS<sSdombbdayB
26 elssuni dombbdayBdombbdayB
27 25 26 syl ANoAVBNoBVbB¬bdomS<sSdombbdayB
28 nodmon bNodombOn
29 imassrn bdayBranbday
30 forn bday:NoontoOnranbday=On
31 19 30 ax-mp ranbday=On
32 29 31 sseqtri bdayBOn
33 ssorduni bdayBOnOrdbdayB
34 32 33 ax-mp OrdbdayB
35 ordsssuc dombOnOrdbdayBdombbdayBdombsucbdayB
36 34 35 mpan2 dombOndombbdayBdombsucbdayB
37 12 28 36 3syl ANoAVBNoBVbB¬bdomS<sSdombbdayBdombsucbdayB
38 27 37 mpbid ANoAVBNoBVbB¬bdomS<sSdombsucbdayB
39 16 38 sselid ANoAVBNoBVbB¬bdomS<sSdombdomSsucbdayB
40 eleq2 domSsucbdayB=dombdombdomSsucbdayBdombdomb
41 39 40 syl5ibcom ANoAVBNoBVbB¬bdomS<sSdomSsucbdayB=dombdombdomb
42 15 41 mtod ANoAVBNoBVbB¬bdomS<sS¬domSsucbdayB=domb
43 2 dmeqi domZ=domSsucbdayBdomS×1𝑜
44 dmun domSsucbdayBdomS×1𝑜=domSdomsucbdayBdomS×1𝑜
45 43 44 eqtri domZ=domSdomsucbdayBdomS×1𝑜
46 1oex 1𝑜V
47 46 snnz 1𝑜
48 dmxp 1𝑜domsucbdayBdomS×1𝑜=sucbdayBdomS
49 47 48 ax-mp domsucbdayBdomS×1𝑜=sucbdayBdomS
50 49 uneq2i domSdomsucbdayBdomS×1𝑜=domSsucbdayBdomS
51 undif2 domSsucbdayBdomS=domSsucbdayB
52 45 50 51 3eqtri domZ=domSsucbdayB
53 dmeq Z=bdomZ=domb
54 52 53 eqtr3id Z=bdomSsucbdayB=domb
55 42 54 nsyl ANoAVBNoBVbB¬bdomS<sS¬Z=b
56 df-ne Zb¬Z=b
57 notnotr ¬¬dombdomS=domSdombdomS=domS
58 simpr ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSpOn|ZpbpdomS
59 58 fvresd ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZdomSpOn|Zpbp=ZpOn|Zpbp
60 2 reseq1i ZdomS=SsucbdayBdomS×1𝑜domS
61 resundir SsucbdayBdomS×1𝑜domS=SdomSsucbdayBdomS×1𝑜domS
62 df-res sucbdayBdomS×1𝑜domS=sucbdayBdomS×1𝑜domS×V
63 disjdifr sucbdayBdomSdomS=
64 xpdisj1 sucbdayBdomSdomS=sucbdayBdomS×1𝑜domS×V=
65 63 64 ax-mp sucbdayBdomS×1𝑜domS×V=
66 62 65 eqtri sucbdayBdomS×1𝑜domS=
67 66 uneq2i SdomSsucbdayBdomS×1𝑜domS=SdomS
68 un0 SdomS=SdomS
69 67 68 eqtri SdomSsucbdayBdomS×1𝑜domS=SdomS
70 60 61 69 3eqtri ZdomS=SdomS
71 simplll ANoAVBNoBVbB¬bdomS<sSZbANoAV
72 1 nosupno ANoAVSNo
73 71 72 syl ANoAVBNoBVbB¬bdomS<sSZbSNo
74 73 adantr ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSSNo
75 nofun SNoFunS
76 74 75 syl ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSFunS
77 funrel FunSRelS
78 resdm RelSSdomS=S
79 76 77 78 3syl ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSSdomS=S
80 70 79 eqtrid ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZdomS=S
81 80 fveq1d ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZdomSpOn|Zpbp=SpOn|Zpbp
82 59 81 eqtr3d ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZpOn|Zpbp=SpOn|Zpbp
83 simp-4l ANoAVBNoBVbB¬bdomS<sSZbANo
84 simp-4r ANoAVBNoBVbB¬bdomS<sSZbAV
85 simplrr ANoAVBNoBVbB¬bdomS<sSBV
86 85 adantr ANoAVBNoBVbB¬bdomS<sSZbBV
87 1 2 noetasuplem1 ANoAVBVZNo
88 83 84 86 87 syl3anc ANoAVBNoBVbB¬bdomS<sSZbZNo
89 88 adantr ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZNo
90 12 adantr ANoAVBNoBVbB¬bdomS<sSZbbNo
91 90 adantr ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSbNo
92 simplr ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZb
93 nosepne ZNobNoZbZpOn|ZpbpbpOn|Zpbp
94 89 91 92 93 syl3anc ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZpOn|ZpbpbpOn|Zpbp
95 82 94 eqnetrrd ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSSpOn|ZpbpbpOn|Zpbp
96 58 fvresd ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSbdomSpOn|Zpbp=bpOn|Zpbp
97 95 96 neeqtrrd ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSSpOn|ZpbpbdomSpOn|Zpbp
98 fveq2 q=pOn|ZpbpbdomSq=bdomSpOn|Zpbp
99 fveq2 q=pOn|ZpbpSq=SpOn|Zpbp
100 98 99 neeq12d q=pOn|ZpbpbdomSqSqbdomSpOn|ZpbpSpOn|Zpbp
101 df-ne bdomSqSq¬bdomSq=Sq
102 necom bdomSpOn|ZpbpSpOn|ZpbpSpOn|ZpbpbdomSpOn|Zpbp
103 100 101 102 3bitr3g q=pOn|Zpbp¬bdomSq=SqSpOn|ZpbpbdomSpOn|Zpbp
104 103 rspcev pOn|ZpbpdomSSpOn|ZpbpbdomSpOn|ZpbpqdomS¬bdomSq=Sq
105 58 97 104 syl2anc ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSqdomS¬bdomSq=Sq
106 rexeq dombdomS=domSqdombdomS¬bdomSq=SqqdomS¬bdomSq=Sq
107 105 106 syl5ibrcom ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSdombdomS=domSqdombdomS¬bdomSq=Sq
108 rexnal qdombdomS¬bdomSq=Sq¬qdombdomSbdomSq=Sq
109 107 108 imbitrdi ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSdombdomS=domS¬qdombdomSbdomSq=Sq
110 57 109 syl5 ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomS¬¬dombdomS=domS¬qdombdomSbdomSq=Sq
111 110 orrd ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomS¬dombdomS=domS¬qdombdomSbdomSq=Sq
112 nofun bNoFunb
113 funres FunbFunbdomS
114 91 112 113 3syl ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSFunbdomS
115 eqfunfv FunbdomSFunSbdomS=SdombdomS=domSqdombdomSbdomSq=Sq
116 114 76 115 syl2anc ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSbdomS=SdombdomS=domSqdombdomSbdomSq=Sq
117 ianor ¬dombdomS=domSqdombdomSbdomSq=Sq¬dombdomS=domS¬qdombdomSbdomSq=Sq
118 117 con1bii ¬¬dombdomS=domS¬qdombdomSbdomSq=SqdombdomS=domSqdombdomSbdomSq=Sq
119 116 118 bitr4di ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSbdomS=S¬¬dombdomS=domS¬qdombdomSbdomSq=Sq
120 119 con2bid ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomS¬dombdomS=domS¬qdombdomSbdomSq=Sq¬bdomS=S
121 111 120 mpbid ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomS¬bdomS=S
122 121 pm2.21d ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSbdomS=SZ<sb
123 80 breq1d ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZdomS<sbdomSS<sbdomS
124 nodmon SNodomSOn
125 74 124 syl ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSdomSOn
126 sltres ZNobNodomSOnZdomS<sbdomSZ<sb
127 89 91 125 126 syl3anc ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZdomS<sbdomSZ<sb
128 123 127 sylbird ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSS<sbdomSZ<sb
129 simplrr ANoAVBNoBVbB¬bdomS<sSZb¬bdomS<sS
130 129 adantr ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomS¬bdomS<sS
131 noreson bNodomSOnbdomSNo
132 91 125 131 syl2anc ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSbdomSNo
133 sltso <sOrNo
134 sotric <sOrNobdomSNoSNobdomS<sS¬bdomS=SS<sbdomS
135 133 134 mpan bdomSNoSNobdomS<sS¬bdomS=SS<sbdomS
136 132 74 135 syl2anc ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSbdomS<sS¬bdomS=SS<sbdomS
137 136 con2bid ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSbdomS=SS<sbdomS¬bdomS<sS
138 130 137 mpbird ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSbdomS=SS<sbdomS
139 122 128 138 mpjaod ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSZ<sb
140 88 adantr ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpZNo
141 90 adantr ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpbNo
142 simplr ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpZb
143 2 fveq1i ZpOn|Zpbp=SsucbdayBdomS×1𝑜pOn|Zpbp
144 simp-4l ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpANoAV
145 144 72 75 3syl ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpFunS
146 funfn FunSSFndomS
147 145 146 sylib ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpSFndomS
148 46 fconst sucbdayBdomS×1𝑜:sucbdayBdomS1𝑜
149 ffn sucbdayBdomS×1𝑜:sucbdayBdomS1𝑜sucbdayBdomS×1𝑜FnsucbdayBdomS
150 148 149 ax-mp sucbdayBdomS×1𝑜FnsucbdayBdomS
151 150 a1i ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpsucbdayBdomS×1𝑜FnsucbdayBdomS
152 disjdif domSsucbdayBdomS=
153 152 a1i ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpdomSsucbdayBdomS=
154 necom ZpbpbpZp
155 154 rabbii pOn|Zpbp=pOn|bpZp
156 155 inteqi pOn|Zpbp=pOn|bpZp
157 142 necomd ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpbZ
158 nosepssdm bNoZNobZpOn|bpZpdomb
159 141 140 157 158 syl3anc ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbppOn|bpZpdomb
160 156 159 eqsstrid ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbppOn|Zpbpdomb
161 141 17 syl ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|Zpbpbdayb=domb
162 simplrl ANoAVBNoBVbB¬bdomS<sSBNo
163 162 adantr ANoAVBNoBVbB¬bdomS<sSZbBNo
164 163 adantr ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpBNo
165 simplrl ANoAVBNoBVbB¬bdomS<sSZbbB
166 165 adantr ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpbB
167 164 166 23 syl2anc ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpbdaybbdayB
168 161 167 eqeltrrd ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpdombbdayB
169 168 26 syl ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpdombbdayB
170 141 28 36 3syl ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpdombbdayBdombsucbdayB
171 169 170 mpbid ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpdombsucbdayB
172 nosepon ZNobNoZbpOn|ZpbpOn
173 140 141 142 172 syl3anc ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbppOn|ZpbpOn
174 eloni pOn|ZpbpOnOrdpOn|Zpbp
175 ordsuc OrdbdayBOrdsucbdayB
176 34 175 mpbi OrdsucbdayB
177 ordtr2 OrdpOn|ZpbpOrdsucbdayBpOn|ZpbpdombdombsucbdayBpOn|ZpbpsucbdayB
178 176 177 mpan2 OrdpOn|ZpbppOn|ZpbpdombdombsucbdayBpOn|ZpbpsucbdayB
179 173 174 178 3syl ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbppOn|ZpbpdombdombsucbdayBpOn|ZpbpsucbdayB
180 160 171 179 mp2and ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbppOn|ZpbpsucbdayB
181 simpr ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpdomSpOn|Zpbp
182 144 72 124 3syl ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpdomSOn
183 ontri1 domSOnpOn|ZpbpOndomSpOn|Zpbp¬pOn|ZpbpdomS
184 182 173 183 syl2anc ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpdomSpOn|Zpbp¬pOn|ZpbpdomS
185 181 184 mpbid ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|Zpbp¬pOn|ZpbpdomS
186 180 185 eldifd ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbppOn|ZpbpsucbdayBdomS
187 fvun2 SFndomSsucbdayBdomS×1𝑜FnsucbdayBdomSdomSsucbdayBdomS=pOn|ZpbpsucbdayBdomSSsucbdayBdomS×1𝑜pOn|Zpbp=sucbdayBdomS×1𝑜pOn|Zpbp
188 147 151 153 186 187 syl112anc ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpSsucbdayBdomS×1𝑜pOn|Zpbp=sucbdayBdomS×1𝑜pOn|Zpbp
189 143 188 eqtrid ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpZpOn|Zpbp=sucbdayBdomS×1𝑜pOn|Zpbp
190 46 fvconst2 pOn|ZpbpsucbdayBdomSsucbdayBdomS×1𝑜pOn|Zpbp=1𝑜
191 186 190 syl ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpsucbdayBdomS×1𝑜pOn|Zpbp=1𝑜
192 189 191 eqtrd ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpZpOn|Zpbp=1𝑜
193 nosep1o ZNobNoZbZpOn|Zpbp=1𝑜Z<sb
194 140 141 142 192 193 syl31anc ANoAVBNoBVbB¬bdomS<sSZbdomSpOn|ZpbpZ<sb
195 simpr ANoAVBNoBVbB¬bdomS<sSZbZb
196 88 90 195 172 syl3anc ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpOn
197 196 174 syl ANoAVBNoBVbB¬bdomS<sSZbOrdpOn|Zpbp
198 nodmord SNoOrddomS
199 71 72 198 3syl ANoAVBNoBVbB¬bdomS<sSZbOrddomS
200 ordtri2or OrdpOn|ZpbpOrddomSpOn|ZpbpdomSdomSpOn|Zpbp
201 197 199 200 syl2anc ANoAVBNoBVbB¬bdomS<sSZbpOn|ZpbpdomSdomSpOn|Zpbp
202 139 194 201 mpjaodan ANoAVBNoBVbB¬bdomS<sSZbZ<sb
203 202 ex ANoAVBNoBVbB¬bdomS<sSZbZ<sb
204 56 203 biimtrrid ANoAVBNoBVbB¬bdomS<sS¬Z=bZ<sb
205 55 204 mpd ANoAVBNoBVbB¬bdomS<sSZ<sb
206 205 expr ANoAVBNoBVbB¬bdomS<sSZ<sb
207 9 206 sylbid ANoAVBNoBVbBaAa<sbZ<sb
208 207 ralimdva ANoAVBNoBVbBaAa<sbbBZ<sb
209 3 208 biimtrid ANoAVBNoBVaAbBa<sbbBZ<sb
210 209 3impia ANoAVBNoBVaAbBa<sbbBZ<sb