Metamath Proof Explorer


Theorem noetasuplem4

Description: Lemma for noeta . When A and B are separated, then Z is a lower bound for B . Part of Theorem 5.1 of Lipparini p. 7-8. (Contributed by Scott Fenton, 7-Dec-2021)

Ref Expression
Hypotheses noetasuplem.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
noetasuplem.2 Z = S suc bday B dom S × 1 𝑜
Assertion noetasuplem4 A No A V B No B V a A b B a < s b b B Z < s b

Proof

Step Hyp Ref Expression
1 noetasuplem.1 S = if x A y A ¬ x < s y ι x A | y A ¬ x < s y dom ι x A | y A ¬ x < s y 2 𝑜 g y | u A y dom u v A ¬ v < s u u suc y = v suc y ι x | u A g dom u v A ¬ v < s u u suc g = v suc g u g = x
2 noetasuplem.2 Z = S suc bday B dom S × 1 𝑜
3 ralcom a A b B a < s b b B a A a < s b
4 simplll A No A V B No B V b B A No
5 simpllr A No A V B No B V b B A V
6 simprl A No A V B No B V B No
7 6 sselda A No A V B No B V b B b No
8 1 nosupbnd2 A No A V b No a A a < s b ¬ b dom S < s S
9 4 5 7 8 syl3anc A No A V B No B V b B a A a < s b ¬ b dom S < s S
10 simpl b B ¬ b dom S < s S b B
11 ssel2 B No b B b No
12 6 10 11 syl2an A No A V B No B V b B ¬ b dom S < s S b No
13 nodmord b No Ord dom b
14 ordirr Ord dom b ¬ dom b dom b
15 12 13 14 3syl A No A V B No B V b B ¬ b dom S < s S ¬ dom b dom b
16 ssun2 suc bday B dom S suc bday B
17 bdayval b No bday b = dom b
18 12 17 syl A No A V B No B V b B ¬ b dom S < s S bday b = dom b
19 bdayfo bday : No onto On
20 fofn bday : No onto On bday Fn No
21 19 20 ax-mp bday Fn No
22 fnfvima bday Fn No B No b B bday b bday B
23 21 22 mp3an1 B No b B bday b bday B
24 6 10 23 syl2an A No A V B No B V b B ¬ b dom S < s S bday b bday B
25 18 24 eqeltrrd A No A V B No B V b B ¬ b dom S < s S dom b bday B
26 elssuni dom b bday B dom b bday B
27 25 26 syl A No A V B No B V b B ¬ b dom S < s S dom b bday B
28 nodmon b No dom b On
29 imassrn bday B ran bday
30 forn bday : No onto On ran bday = On
31 19 30 ax-mp ran bday = On
32 29 31 sseqtri bday B On
33 ssorduni bday B On Ord bday B
34 32 33 ax-mp Ord bday B
35 ordsssuc dom b On Ord bday B dom b bday B dom b suc bday B
36 34 35 mpan2 dom b On dom b bday B dom b suc bday B
37 12 28 36 3syl A No A V B No B V b B ¬ b dom S < s S dom b bday B dom b suc bday B
38 27 37 mpbid A No A V B No B V b B ¬ b dom S < s S dom b suc bday B
39 16 38 sselid A No A V B No B V b B ¬ b dom S < s S dom b dom S suc bday B
40 eleq2 dom S suc bday B = dom b dom b dom S suc bday B dom b dom b
41 39 40 syl5ibcom A No A V B No B V b B ¬ b dom S < s S dom S suc bday B = dom b dom b dom b
42 15 41 mtod A No A V B No B V b B ¬ b dom S < s S ¬ dom S suc bday B = dom b
43 2 dmeqi dom Z = dom S suc bday B dom S × 1 𝑜
44 dmun dom S suc bday B dom S × 1 𝑜 = dom S dom suc bday B dom S × 1 𝑜
45 43 44 eqtri dom Z = dom S dom suc bday B dom S × 1 𝑜
46 1oex 1 𝑜 V
47 46 snnz 1 𝑜
48 dmxp 1 𝑜 dom suc bday B dom S × 1 𝑜 = suc bday B dom S
49 47 48 ax-mp dom suc bday B dom S × 1 𝑜 = suc bday B dom S
50 49 uneq2i dom S dom suc bday B dom S × 1 𝑜 = dom S suc bday B dom S
51 undif2 dom S suc bday B dom S = dom S suc bday B
52 45 50 51 3eqtri dom Z = dom S suc bday B
53 dmeq Z = b dom Z = dom b
54 52 53 eqtr3id Z = b dom S suc bday B = dom b
55 42 54 nsyl A No A V B No B V b B ¬ b dom S < s S ¬ Z = b
56 df-ne Z b ¬ Z = b
57 notnotr ¬ ¬ dom b dom S = dom S dom b dom S = dom S
58 simpr A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S p On | Z p b p dom S
59 58 fvresd A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z dom S p On | Z p b p = Z p On | Z p b p
60 2 reseq1i Z dom S = S suc bday B dom S × 1 𝑜 dom S
61 resundir S suc bday B dom S × 1 𝑜 dom S = S dom S suc bday B dom S × 1 𝑜 dom S
62 df-res suc bday B dom S × 1 𝑜 dom S = suc bday B dom S × 1 𝑜 dom S × V
63 disjdifr suc bday B dom S dom S =
64 xpdisj1 suc bday B dom S dom S = suc bday B dom S × 1 𝑜 dom S × V =
65 63 64 ax-mp suc bday B dom S × 1 𝑜 dom S × V =
66 62 65 eqtri suc bday B dom S × 1 𝑜 dom S =
67 66 uneq2i S dom S suc bday B dom S × 1 𝑜 dom S = S dom S
68 un0 S dom S = S dom S
69 67 68 eqtri S dom S suc bday B dom S × 1 𝑜 dom S = S dom S
70 60 61 69 3eqtri Z dom S = S dom S
71 simplll A No A V B No B V b B ¬ b dom S < s S Z b A No A V
72 1 nosupno A No A V S No
73 71 72 syl A No A V B No B V b B ¬ b dom S < s S Z b S No
74 73 adantr A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S S No
75 nofun S No Fun S
76 74 75 syl A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Fun S
77 funrel Fun S Rel S
78 resdm Rel S S dom S = S
79 76 77 78 3syl A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S S dom S = S
80 70 79 eqtrid A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z dom S = S
81 80 fveq1d A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z dom S p On | Z p b p = S p On | Z p b p
82 59 81 eqtr3d A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z p On | Z p b p = S p On | Z p b p
83 simp-4l A No A V B No B V b B ¬ b dom S < s S Z b A No
84 simp-4r A No A V B No B V b B ¬ b dom S < s S Z b A V
85 simplrr A No A V B No B V b B ¬ b dom S < s S B V
86 85 adantr A No A V B No B V b B ¬ b dom S < s S Z b B V
87 1 2 noetasuplem1 A No A V B V Z No
88 83 84 86 87 syl3anc A No A V B No B V b B ¬ b dom S < s S Z b Z No
89 88 adantr A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z No
90 12 adantr A No A V B No B V b B ¬ b dom S < s S Z b b No
91 90 adantr A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S b No
92 simplr A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z b
93 nosepne Z No b No Z b Z p On | Z p b p b p On | Z p b p
94 89 91 92 93 syl3anc A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z p On | Z p b p b p On | Z p b p
95 82 94 eqnetrrd A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S S p On | Z p b p b p On | Z p b p
96 58 fvresd A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S b dom S p On | Z p b p = b p On | Z p b p
97 95 96 neeqtrrd A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S S p On | Z p b p b dom S p On | Z p b p
98 fveq2 q = p On | Z p b p b dom S q = b dom S p On | Z p b p
99 fveq2 q = p On | Z p b p S q = S p On | Z p b p
100 98 99 neeq12d q = p On | Z p b p b dom S q S q b dom S p On | Z p b p S p On | Z p b p
101 df-ne b dom S q S q ¬ b dom S q = S q
102 necom b dom S p On | Z p b p S p On | Z p b p S p On | Z p b p b dom S p On | Z p b p
103 100 101 102 3bitr3g q = p On | Z p b p ¬ b dom S q = S q S p On | Z p b p b dom S p On | Z p b p
104 103 rspcev p On | Z p b p dom S S p On | Z p b p b dom S p On | Z p b p q dom S ¬ b dom S q = S q
105 58 97 104 syl2anc A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S q dom S ¬ b dom S q = S q
106 rexeq dom b dom S = dom S q dom b dom S ¬ b dom S q = S q q dom S ¬ b dom S q = S q
107 105 106 syl5ibrcom A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S dom b dom S = dom S q dom b dom S ¬ b dom S q = S q
108 rexnal q dom b dom S ¬ b dom S q = S q ¬ q dom b dom S b dom S q = S q
109 107 108 syl6ib A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S dom b dom S = dom S ¬ q dom b dom S b dom S q = S q
110 57 109 syl5 A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S ¬ ¬ dom b dom S = dom S ¬ q dom b dom S b dom S q = S q
111 110 orrd A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S ¬ dom b dom S = dom S ¬ q dom b dom S b dom S q = S q
112 nofun b No Fun b
113 funres Fun b Fun b dom S
114 91 112 113 3syl A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Fun b dom S
115 eqfunfv Fun b dom S Fun S b dom S = S dom b dom S = dom S q dom b dom S b dom S q = S q
116 114 76 115 syl2anc A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S b dom S = S dom b dom S = dom S q dom b dom S b dom S q = S q
117 ianor ¬ dom b dom S = dom S q dom b dom S b dom S q = S q ¬ dom b dom S = dom S ¬ q dom b dom S b dom S q = S q
118 117 con1bii ¬ ¬ dom b dom S = dom S ¬ q dom b dom S b dom S q = S q dom b dom S = dom S q dom b dom S b dom S q = S q
119 116 118 bitr4di A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S b dom S = S ¬ ¬ dom b dom S = dom S ¬ q dom b dom S b dom S q = S q
120 119 con2bid A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S ¬ dom b dom S = dom S ¬ q dom b dom S b dom S q = S q ¬ b dom S = S
121 111 120 mpbid A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S ¬ b dom S = S
122 121 pm2.21d A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S b dom S = S Z < s b
123 80 breq1d A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z dom S < s b dom S S < s b dom S
124 nodmon S No dom S On
125 74 124 syl A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S dom S On
126 sltres Z No b No dom S On Z dom S < s b dom S Z < s b
127 89 91 125 126 syl3anc A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z dom S < s b dom S Z < s b
128 123 127 sylbird A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S S < s b dom S Z < s b
129 simplrr A No A V B No B V b B ¬ b dom S < s S Z b ¬ b dom S < s S
130 129 adantr A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S ¬ b dom S < s S
131 noreson b No dom S On b dom S No
132 91 125 131 syl2anc A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S b dom S No
133 sltso < s Or No
134 sotric < s Or No b dom S No S No b dom S < s S ¬ b dom S = S S < s b dom S
135 133 134 mpan b dom S No S No b dom S < s S ¬ b dom S = S S < s b dom S
136 132 74 135 syl2anc A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S b dom S < s S ¬ b dom S = S S < s b dom S
137 136 con2bid A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S b dom S = S S < s b dom S ¬ b dom S < s S
138 130 137 mpbird A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S b dom S = S S < s b dom S
139 122 128 138 mpjaod A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S Z < s b
140 88 adantr A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p Z No
141 90 adantr A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p b No
142 simplr A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p Z b
143 2 fveq1i Z p On | Z p b p = S suc bday B dom S × 1 𝑜 p On | Z p b p
144 simp-4l A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p A No A V
145 144 72 75 3syl A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p Fun S
146 funfn Fun S S Fn dom S
147 145 146 sylib A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p S Fn dom S
148 46 fconst suc bday B dom S × 1 𝑜 : suc bday B dom S 1 𝑜
149 ffn suc bday B dom S × 1 𝑜 : suc bday B dom S 1 𝑜 suc bday B dom S × 1 𝑜 Fn suc bday B dom S
150 148 149 ax-mp suc bday B dom S × 1 𝑜 Fn suc bday B dom S
151 150 a1i A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p suc bday B dom S × 1 𝑜 Fn suc bday B dom S
152 disjdif dom S suc bday B dom S =
153 152 a1i A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p dom S suc bday B dom S =
154 necom Z p b p b p Z p
155 154 rabbii p On | Z p b p = p On | b p Z p
156 155 inteqi p On | Z p b p = p On | b p Z p
157 142 necomd A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p b Z
158 nosepssdm b No Z No b Z p On | b p Z p dom b
159 141 140 157 158 syl3anc A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p p On | b p Z p dom b
160 156 159 eqsstrid A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p p On | Z p b p dom b
161 141 17 syl A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p bday b = dom b
162 simplrl A No A V B No B V b B ¬ b dom S < s S B No
163 162 adantr A No A V B No B V b B ¬ b dom S < s S Z b B No
164 163 adantr A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p B No
165 simplrl A No A V B No B V b B ¬ b dom S < s S Z b b B
166 165 adantr A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p b B
167 164 166 23 syl2anc A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p bday b bday B
168 161 167 eqeltrrd A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p dom b bday B
169 168 26 syl A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p dom b bday B
170 141 28 36 3syl A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p dom b bday B dom b suc bday B
171 169 170 mpbid A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p dom b suc bday B
172 nosepon Z No b No Z b p On | Z p b p On
173 140 141 142 172 syl3anc A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p p On | Z p b p On
174 eloni p On | Z p b p On Ord p On | Z p b p
175 ordsuc Ord bday B Ord suc bday B
176 34 175 mpbi Ord suc bday B
177 ordtr2 Ord p On | Z p b p Ord suc bday B p On | Z p b p dom b dom b suc bday B p On | Z p b p suc bday B
178 176 177 mpan2 Ord p On | Z p b p p On | Z p b p dom b dom b suc bday B p On | Z p b p suc bday B
179 173 174 178 3syl A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p p On | Z p b p dom b dom b suc bday B p On | Z p b p suc bday B
180 160 171 179 mp2and A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p p On | Z p b p suc bday B
181 simpr A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p dom S p On | Z p b p
182 144 72 124 3syl A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p dom S On
183 ontri1 dom S On p On | Z p b p On dom S p On | Z p b p ¬ p On | Z p b p dom S
184 182 173 183 syl2anc A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p dom S p On | Z p b p ¬ p On | Z p b p dom S
185 181 184 mpbid A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p ¬ p On | Z p b p dom S
186 180 185 eldifd A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p p On | Z p b p suc bday B dom S
187 fvun2 S Fn dom S suc bday B dom S × 1 𝑜 Fn suc bday B dom S dom S suc bday B dom S = p On | Z p b p suc bday B dom S S suc bday B dom S × 1 𝑜 p On | Z p b p = suc bday B dom S × 1 𝑜 p On | Z p b p
188 147 151 153 186 187 syl112anc A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p S suc bday B dom S × 1 𝑜 p On | Z p b p = suc bday B dom S × 1 𝑜 p On | Z p b p
189 143 188 eqtrid A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p Z p On | Z p b p = suc bday B dom S × 1 𝑜 p On | Z p b p
190 46 fvconst2 p On | Z p b p suc bday B dom S suc bday B dom S × 1 𝑜 p On | Z p b p = 1 𝑜
191 186 190 syl A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p suc bday B dom S × 1 𝑜 p On | Z p b p = 1 𝑜
192 189 191 eqtrd A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p Z p On | Z p b p = 1 𝑜
193 nosep1o Z No b No Z b Z p On | Z p b p = 1 𝑜 Z < s b
194 140 141 142 192 193 syl31anc A No A V B No B V b B ¬ b dom S < s S Z b dom S p On | Z p b p Z < s b
195 simpr A No A V B No B V b B ¬ b dom S < s S Z b Z b
196 88 90 195 172 syl3anc A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p On
197 196 174 syl A No A V B No B V b B ¬ b dom S < s S Z b Ord p On | Z p b p
198 nodmord S No Ord dom S
199 71 72 198 3syl A No A V B No B V b B ¬ b dom S < s S Z b Ord dom S
200 ordtri2or Ord p On | Z p b p Ord dom S p On | Z p b p dom S dom S p On | Z p b p
201 197 199 200 syl2anc A No A V B No B V b B ¬ b dom S < s S Z b p On | Z p b p dom S dom S p On | Z p b p
202 139 194 201 mpjaodan A No A V B No B V b B ¬ b dom S < s S Z b Z < s b
203 202 ex A No A V B No B V b B ¬ b dom S < s S Z b Z < s b
204 56 203 syl5bir A No A V B No B V b B ¬ b dom S < s S ¬ Z = b Z < s b
205 55 204 mpd A No A V B No B V b B ¬ b dom S < s S Z < s b
206 205 expr A No A V B No B V b B ¬ b dom S < s S Z < s b
207 9 206 sylbid A No A V B No B V b B a A a < s b Z < s b
208 207 ralimdva A No A V B No B V b B a A a < s b b B Z < s b
209 3 208 syl5bi A No A V B No B V a A b B a < s b b B Z < s b
210 209 3impia A No A V B No B V a A b B a < s b b B Z < s b