Metamath Proof Explorer


Theorem oaabs2

Description: The absorption law oaabs is also a property of higher powers of _om . (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion oaabs2 Aω𝑜CBOnω𝑜CBA+𝑜B=B

Proof

Step Hyp Ref Expression
1 n0i Aω𝑜C¬ω𝑜C=
2 fnoe 𝑜FnOn×On
3 fndm 𝑜FnOn×Ondom𝑜=On×On
4 2 3 ax-mp dom𝑜=On×On
5 4 ndmov ¬ωOnCOnω𝑜C=
6 1 5 nsyl2 Aω𝑜CωOnCOn
7 6 ad2antrr Aω𝑜CBOnω𝑜CBωOnCOn
8 oecl ωOnCOnω𝑜COn
9 7 8 syl Aω𝑜CBOnω𝑜CBω𝑜COn
10 simplr Aω𝑜CBOnω𝑜CBBOn
11 simpr Aω𝑜CBOnω𝑜CBω𝑜CB
12 oawordeu ω𝑜COnBOnω𝑜CB∃!xOnω𝑜C+𝑜x=B
13 9 10 11 12 syl21anc Aω𝑜CBOnω𝑜CB∃!xOnω𝑜C+𝑜x=B
14 reurex ∃!xOnω𝑜C+𝑜x=BxOnω𝑜C+𝑜x=B
15 13 14 syl Aω𝑜CBOnω𝑜CBxOnω𝑜C+𝑜x=B
16 simpll Aω𝑜CBOnω𝑜CBAω𝑜C
17 onelon ω𝑜COnAω𝑜CAOn
18 9 16 17 syl2anc Aω𝑜CBOnω𝑜CBAOn
19 18 adantr Aω𝑜CBOnω𝑜CBxOnAOn
20 9 adantr Aω𝑜CBOnω𝑜CBxOnω𝑜COn
21 simpr Aω𝑜CBOnω𝑜CBxOnxOn
22 oaass AOnω𝑜COnxOnA+𝑜ω𝑜C+𝑜x=A+𝑜ω𝑜C+𝑜x
23 19 20 21 22 syl3anc Aω𝑜CBOnω𝑜CBxOnA+𝑜ω𝑜C+𝑜x=A+𝑜ω𝑜C+𝑜x
24 7 simprd Aω𝑜CBOnω𝑜CBCOn
25 eloni COnOrdC
26 24 25 syl Aω𝑜CBOnω𝑜CBOrdC
27 ordzsl OrdCC=xOnC=sucxLimC
28 26 27 sylib Aω𝑜CBOnω𝑜CBC=xOnC=sucxLimC
29 simplll Aω𝑜CBOnω𝑜CBC=Aω𝑜C
30 oveq2 C=ω𝑜C=ω𝑜
31 7 simpld Aω𝑜CBOnω𝑜CBωOn
32 oe0 ωOnω𝑜=1𝑜
33 31 32 syl Aω𝑜CBOnω𝑜CBω𝑜=1𝑜
34 30 33 sylan9eqr Aω𝑜CBOnω𝑜CBC=ω𝑜C=1𝑜
35 29 34 eleqtrd Aω𝑜CBOnω𝑜CBC=A1𝑜
36 el1o A1𝑜A=
37 35 36 sylib Aω𝑜CBOnω𝑜CBC=A=
38 37 oveq1d Aω𝑜CBOnω𝑜CBC=A+𝑜ω𝑜C=+𝑜ω𝑜C
39 9 adantr Aω𝑜CBOnω𝑜CBC=ω𝑜COn
40 oa0r ω𝑜COn+𝑜ω𝑜C=ω𝑜C
41 39 40 syl Aω𝑜CBOnω𝑜CBC=+𝑜ω𝑜C=ω𝑜C
42 38 41 eqtrd Aω𝑜CBOnω𝑜CBC=A+𝑜ω𝑜C=ω𝑜C
43 42 ex Aω𝑜CBOnω𝑜CBC=A+𝑜ω𝑜C=ω𝑜C
44 31 adantr Aω𝑜CBOnω𝑜CBxOnC=sucxωOn
45 simprl Aω𝑜CBOnω𝑜CBxOnC=sucxxOn
46 oecl ωOnxOnω𝑜xOn
47 44 45 46 syl2anc Aω𝑜CBOnω𝑜CBxOnC=sucxω𝑜xOn
48 limom Limω
49 44 48 jctir Aω𝑜CBOnω𝑜CBxOnC=sucxωOnLimω
50 simplll Aω𝑜CBOnω𝑜CBxOnC=sucxAω𝑜C
51 simprr Aω𝑜CBOnω𝑜CBxOnC=sucxC=sucx
52 51 oveq2d Aω𝑜CBOnω𝑜CBxOnC=sucxω𝑜C=ω𝑜sucx
53 oesuc ωOnxOnω𝑜sucx=ω𝑜x𝑜ω
54 44 45 53 syl2anc Aω𝑜CBOnω𝑜CBxOnC=sucxω𝑜sucx=ω𝑜x𝑜ω
55 52 54 eqtrd Aω𝑜CBOnω𝑜CBxOnC=sucxω𝑜C=ω𝑜x𝑜ω
56 50 55 eleqtrd Aω𝑜CBOnω𝑜CBxOnC=sucxAω𝑜x𝑜ω
57 omordlim ω𝑜xOnωOnLimωAω𝑜x𝑜ωyωAω𝑜x𝑜y
58 47 49 56 57 syl21anc Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜y
59 47 adantr Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yω𝑜xOn
60 nnon yωyOn
61 60 ad2antrl Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yyOn
62 omcl ω𝑜xOnyOnω𝑜x𝑜yOn
63 59 61 62 syl2anc Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yω𝑜x𝑜yOn
64 eloni ω𝑜x𝑜yOnOrdω𝑜x𝑜y
65 63 64 syl Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yOrdω𝑜x𝑜y
66 simprr Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yAω𝑜x𝑜y
67 ordelss Ordω𝑜x𝑜yAω𝑜x𝑜yAω𝑜x𝑜y
68 65 66 67 syl2anc Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yAω𝑜x𝑜y
69 18 ad2antrr Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yAOn
70 9 ad2antrr Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yω𝑜COn
71 oawordri AOnω𝑜x𝑜yOnω𝑜COnAω𝑜x𝑜yA+𝑜ω𝑜Cω𝑜x𝑜y+𝑜ω𝑜C
72 69 63 70 71 syl3anc Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yAω𝑜x𝑜yA+𝑜ω𝑜Cω𝑜x𝑜y+𝑜ω𝑜C
73 68 72 mpd Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yA+𝑜ω𝑜Cω𝑜x𝑜y+𝑜ω𝑜C
74 44 adantr Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yωOn
75 odi ω𝑜xOnyOnωOnω𝑜x𝑜y+𝑜ω=ω𝑜x𝑜y+𝑜ω𝑜x𝑜ω
76 59 61 74 75 syl3anc Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yω𝑜x𝑜y+𝑜ω=ω𝑜x𝑜y+𝑜ω𝑜x𝑜ω
77 simprl Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yyω
78 oaabslem ωOnyωy+𝑜ω=ω
79 74 77 78 syl2anc Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yy+𝑜ω=ω
80 79 oveq2d Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yω𝑜x𝑜y+𝑜ω=ω𝑜x𝑜ω
81 76 80 eqtr3d Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yω𝑜x𝑜y+𝑜ω𝑜x𝑜ω=ω𝑜x𝑜ω
82 55 adantr Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yω𝑜C=ω𝑜x𝑜ω
83 82 oveq2d Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yω𝑜x𝑜y+𝑜ω𝑜C=ω𝑜x𝑜y+𝑜ω𝑜x𝑜ω
84 81 83 82 3eqtr4d Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yω𝑜x𝑜y+𝑜ω𝑜C=ω𝑜C
85 73 84 sseqtrd Aω𝑜CBOnω𝑜CBxOnC=sucxyωAω𝑜x𝑜yA+𝑜ω𝑜Cω𝑜C
86 58 85 rexlimddv Aω𝑜CBOnω𝑜CBxOnC=sucxA+𝑜ω𝑜Cω𝑜C
87 oaword2 ω𝑜COnAOnω𝑜CA+𝑜ω𝑜C
88 9 18 87 syl2anc Aω𝑜CBOnω𝑜CBω𝑜CA+𝑜ω𝑜C
89 88 adantr Aω𝑜CBOnω𝑜CBxOnC=sucxω𝑜CA+𝑜ω𝑜C
90 86 89 eqssd Aω𝑜CBOnω𝑜CBxOnC=sucxA+𝑜ω𝑜C=ω𝑜C
91 90 rexlimdvaa Aω𝑜CBOnω𝑜CBxOnC=sucxA+𝑜ω𝑜C=ω𝑜C
92 simplll Aω𝑜CBOnω𝑜CBLimCAω𝑜C
93 31 adantr Aω𝑜CBOnω𝑜CBLimCωOn
94 24 adantr Aω𝑜CBOnω𝑜CBLimCCOn
95 simpr Aω𝑜CBOnω𝑜CBLimCLimC
96 oelim2 ωOnCOnLimCω𝑜C=xC1𝑜ω𝑜x
97 93 94 95 96 syl12anc Aω𝑜CBOnω𝑜CBLimCω𝑜C=xC1𝑜ω𝑜x
98 92 97 eleqtrd Aω𝑜CBOnω𝑜CBLimCAxC1𝑜ω𝑜x
99 eliun AxC1𝑜ω𝑜xxC1𝑜Aω𝑜x
100 98 99 sylib Aω𝑜CBOnω𝑜CBLimCxC1𝑜Aω𝑜x
101 eldifi xC1𝑜xC
102 18 ad2antrr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xAOn
103 9 ad2antrr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xω𝑜COn
104 93 adantr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xωOn
105 1onn 1𝑜ω
106 ondif2 ωOn2𝑜ωOn1𝑜ω
107 104 105 106 sylanblrc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xωOn2𝑜
108 94 adantr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xCOn
109 simplr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xLimC
110 oelimcl ωOn2𝑜COnLimCLimω𝑜C
111 107 108 109 110 syl12anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xLimω𝑜C
112 oalim AOnω𝑜COnLimω𝑜CA+𝑜ω𝑜C=yω𝑜CA+𝑜y
113 102 103 111 112 syl12anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xA+𝑜ω𝑜C=yω𝑜CA+𝑜y
114 oelim2 ωOnCOnLimCω𝑜C=zC1𝑜ω𝑜z
115 93 94 95 114 syl12anc Aω𝑜CBOnω𝑜CBLimCω𝑜C=zC1𝑜ω𝑜z
116 115 eleq2d Aω𝑜CBOnω𝑜CBLimCyω𝑜CyzC1𝑜ω𝑜z
117 eliun yzC1𝑜ω𝑜zzC1𝑜yω𝑜z
118 116 117 bitrdi Aω𝑜CBOnω𝑜CBLimCyω𝑜CzC1𝑜yω𝑜z
119 118 adantr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xyω𝑜CzC1𝑜yω𝑜z
120 eldifi zC1𝑜zC
121 104 adantr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zωOn
122 108 adantr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zCOn
123 simplrl Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zxC
124 onelon COnxCxOn
125 122 123 124 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zxOn
126 121 125 46 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xOn
127 eloni ω𝑜xOnOrdω𝑜x
128 126 127 syl Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zOrdω𝑜x
129 simplrr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zAω𝑜x
130 ordelss Ordω𝑜xAω𝑜xAω𝑜x
131 128 129 130 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zAω𝑜x
132 ssun1 xxz
133 26 ad3antrrr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zOrdC
134 simprl Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zzC
135 ordunel OrdCxCzCxzC
136 133 123 134 135 syl3anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zxzC
137 onelon COnxzCxzOn
138 122 136 137 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zxzOn
139 peano1 ω
140 139 a1i Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω
141 oewordi xOnxzOnωOnωxxzω𝑜xω𝑜xz
142 125 138 121 140 141 syl31anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zxxzω𝑜xω𝑜xz
143 132 142 mpi Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xω𝑜xz
144 131 143 sstrd Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zAω𝑜xz
145 102 adantr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zAOn
146 oecl ωOnxzOnω𝑜xzOn
147 121 138 146 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xzOn
148 onelon COnzCzOn
149 122 134 148 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zzOn
150 oecl ωOnzOnω𝑜zOn
151 121 149 150 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜zOn
152 simprr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zyω𝑜z
153 onelon ω𝑜zOnyω𝑜zyOn
154 151 152 153 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zyOn
155 oawordri AOnω𝑜xzOnyOnAω𝑜xzA+𝑜yω𝑜xz+𝑜y
156 145 147 154 155 syl3anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zAω𝑜xzA+𝑜yω𝑜xz+𝑜y
157 144 156 mpd Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zA+𝑜yω𝑜xz+𝑜y
158 eloni ω𝑜zOnOrdω𝑜z
159 151 158 syl Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zOrdω𝑜z
160 ordelss Ordω𝑜zyω𝑜zyω𝑜z
161 159 152 160 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zyω𝑜z
162 ssun2 zxz
163 oewordi zOnxzOnωOnωzxzω𝑜zω𝑜xz
164 149 138 121 140 163 syl31anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zzxzω𝑜zω𝑜xz
165 162 164 mpi Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜zω𝑜xz
166 161 165 sstrd Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zyω𝑜xz
167 oaword yOnω𝑜xzOnω𝑜xzOnyω𝑜xzω𝑜xz+𝑜yω𝑜xz+𝑜ω𝑜xz
168 154 147 147 167 syl3anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zyω𝑜xzω𝑜xz+𝑜yω𝑜xz+𝑜ω𝑜xz
169 166 168 mpbid Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xz+𝑜yω𝑜xz+𝑜ω𝑜xz
170 157 169 sstrd Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zA+𝑜yω𝑜xz+𝑜ω𝑜xz
171 ordom Ordω
172 ordsucss Ordω1𝑜ωsuc1𝑜ω
173 171 105 172 mp2 suc1𝑜ω
174 1on 1𝑜On
175 onsuc 1𝑜Onsuc1𝑜On
176 174 175 mp1i Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zsuc1𝑜On
177 omwordi suc1𝑜OnωOnω𝑜xzOnsuc1𝑜ωω𝑜xz𝑜suc1𝑜ω𝑜xz𝑜ω
178 176 121 147 177 syl3anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zsuc1𝑜ωω𝑜xz𝑜suc1𝑜ω𝑜xz𝑜ω
179 173 178 mpi Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xz𝑜suc1𝑜ω𝑜xz𝑜ω
180 174 a1i Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜z1𝑜On
181 omsuc ω𝑜xzOn1𝑜Onω𝑜xz𝑜suc1𝑜=ω𝑜xz𝑜1𝑜+𝑜ω𝑜xz
182 147 180 181 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xz𝑜suc1𝑜=ω𝑜xz𝑜1𝑜+𝑜ω𝑜xz
183 om1 ω𝑜xzOnω𝑜xz𝑜1𝑜=ω𝑜xz
184 147 183 syl Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xz𝑜1𝑜=ω𝑜xz
185 184 oveq1d Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xz𝑜1𝑜+𝑜ω𝑜xz=ω𝑜xz+𝑜ω𝑜xz
186 182 185 eqtr2d Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xz+𝑜ω𝑜xz=ω𝑜xz𝑜suc1𝑜
187 oesuc ωOnxzOnω𝑜sucxz=ω𝑜xz𝑜ω
188 121 138 187 syl2anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜sucxz=ω𝑜xz𝑜ω
189 179 186 188 3sstr4d Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜xz+𝑜ω𝑜xzω𝑜sucxz
190 170 189 sstrd Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zA+𝑜yω𝑜sucxz
191 ordsucss OrdCxzCsucxzC
192 133 136 191 sylc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zsucxzC
193 onsuc xzOnsucxzOn
194 138 193 syl Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zsucxzOn
195 oewordi sucxzOnCOnωOnωsucxzCω𝑜sucxzω𝑜C
196 194 122 121 140 195 syl31anc Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zsucxzCω𝑜sucxzω𝑜C
197 192 196 mpd Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zω𝑜sucxzω𝑜C
198 190 197 sstrd Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zA+𝑜yω𝑜C
199 198 expr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzCyω𝑜zA+𝑜yω𝑜C
200 120 199 sylan2 Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzC1𝑜yω𝑜zA+𝑜yω𝑜C
201 200 rexlimdva Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xzC1𝑜yω𝑜zA+𝑜yω𝑜C
202 119 201 sylbid Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xyω𝑜CA+𝑜yω𝑜C
203 202 ralrimiv Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xyω𝑜CA+𝑜yω𝑜C
204 iunss yω𝑜CA+𝑜yω𝑜Cyω𝑜CA+𝑜yω𝑜C
205 203 204 sylibr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xyω𝑜CA+𝑜yω𝑜C
206 113 205 eqsstrd Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xA+𝑜ω𝑜Cω𝑜C
207 206 expr Aω𝑜CBOnω𝑜CBLimCxCAω𝑜xA+𝑜ω𝑜Cω𝑜C
208 101 207 sylan2 Aω𝑜CBOnω𝑜CBLimCxC1𝑜Aω𝑜xA+𝑜ω𝑜Cω𝑜C
209 208 rexlimdva Aω𝑜CBOnω𝑜CBLimCxC1𝑜Aω𝑜xA+𝑜ω𝑜Cω𝑜C
210 100 209 mpd Aω𝑜CBOnω𝑜CBLimCA+𝑜ω𝑜Cω𝑜C
211 88 adantr Aω𝑜CBOnω𝑜CBLimCω𝑜CA+𝑜ω𝑜C
212 210 211 eqssd Aω𝑜CBOnω𝑜CBLimCA+𝑜ω𝑜C=ω𝑜C
213 212 ex Aω𝑜CBOnω𝑜CBLimCA+𝑜ω𝑜C=ω𝑜C
214 43 91 213 3jaod Aω𝑜CBOnω𝑜CBC=xOnC=sucxLimCA+𝑜ω𝑜C=ω𝑜C
215 28 214 mpd Aω𝑜CBOnω𝑜CBA+𝑜ω𝑜C=ω𝑜C
216 215 adantr Aω𝑜CBOnω𝑜CBxOnA+𝑜ω𝑜C=ω𝑜C
217 216 oveq1d Aω𝑜CBOnω𝑜CBxOnA+𝑜ω𝑜C+𝑜x=ω𝑜C+𝑜x
218 23 217 eqtr3d Aω𝑜CBOnω𝑜CBxOnA+𝑜ω𝑜C+𝑜x=ω𝑜C+𝑜x
219 oveq2 ω𝑜C+𝑜x=BA+𝑜ω𝑜C+𝑜x=A+𝑜B
220 id ω𝑜C+𝑜x=Bω𝑜C+𝑜x=B
221 219 220 eqeq12d ω𝑜C+𝑜x=BA+𝑜ω𝑜C+𝑜x=ω𝑜C+𝑜xA+𝑜B=B
222 218 221 syl5ibcom Aω𝑜CBOnω𝑜CBxOnω𝑜C+𝑜x=BA+𝑜B=B
223 222 rexlimdva Aω𝑜CBOnω𝑜CBxOnω𝑜C+𝑜x=BA+𝑜B=B
224 15 223 mpd Aω𝑜CBOnω𝑜CBA+𝑜B=B