Metamath Proof Explorer


Theorem ovolicc1

Description: The measure of a closed interval is lower bounded by its length. (Contributed by Mario Carneiro, 13-Jun-2014) (Proof shortened by Mario Carneiro, 25-Mar-2015)

Ref Expression
Hypotheses ovolicc.1 φA
ovolicc.2 φB
ovolicc.3 φAB
ovolicc1.4 G=nifn=1AB00
Assertion ovolicc1 φvol*ABBA

Proof

Step Hyp Ref Expression
1 ovolicc.1 φA
2 ovolicc.2 φB
3 ovolicc.3 φAB
4 ovolicc1.4 G=nifn=1AB00
5 iccssre ABAB
6 1 2 5 syl2anc φAB
7 ovolcl ABvol*AB*
8 6 7 syl φvol*AB*
9 df-br ABAB
10 3 9 sylib φAB
11 1 2 opelxpd φAB2
12 10 11 elind φAB2
13 12 adantr φnAB2
14 0le0 00
15 df-br 0000
16 14 15 mpbi 00
17 0re 0
18 opelxpi 00002
19 17 17 18 mp2an 002
20 16 19 elini 002
21 ifcl AB2002ifn=1AB002
22 13 20 21 sylancl φnifn=1AB002
23 22 4 fmptd φG:2
24 eqid absG=absG
25 eqid seq1+absG=seq1+absG
26 24 25 ovolsf G:2seq1+absG:0+∞
27 23 26 syl φseq1+absG:0+∞
28 27 frnd φranseq1+absG0+∞
29 icossxr 0+∞*
30 28 29 sstrdi φranseq1+absG*
31 supxrcl ranseq1+absG*supranseq1+absG*<*
32 30 31 syl φsupranseq1+absG*<*
33 2 1 resubcld φBA
34 33 rexrd φBA*
35 1nn 1
36 35 a1i φxAB1
37 op1stg AB1stAB=A
38 1 2 37 syl2anc φ1stAB=A
39 38 adantr φxAB1stAB=A
40 elicc2 ABxABxAxxB
41 1 2 40 syl2anc φxABxAxxB
42 41 biimpa φxABxAxxB
43 42 simp2d φxABAx
44 39 43 eqbrtrd φxAB1stABx
45 42 simp3d φxABxB
46 op2ndg AB2ndAB=B
47 1 2 46 syl2anc φ2ndAB=B
48 47 adantr φxAB2ndAB=B
49 45 48 breqtrrd φxABx2ndAB
50 fveq2 n=1Gn=G1
51 iftrue n=1ifn=1AB00=AB
52 opex ABV
53 51 4 52 fvmpt 1G1=AB
54 35 53 ax-mp G1=AB
55 50 54 eqtrdi n=1Gn=AB
56 55 fveq2d n=11stGn=1stAB
57 56 breq1d n=11stGnx1stABx
58 55 fveq2d n=12ndGn=2ndAB
59 58 breq2d n=1x2ndGnx2ndAB
60 57 59 anbi12d n=11stGnxx2ndGn1stABxx2ndAB
61 60 rspcev 11stABxx2ndABn1stGnxx2ndGn
62 36 44 49 61 syl12anc φxABn1stGnxx2ndGn
63 62 ralrimiva φxABn1stGnxx2ndGn
64 ovolficc ABG:2ABran.GxABn1stGnxx2ndGn
65 6 23 64 syl2anc φABran.GxABn1stGnxx2ndGn
66 63 65 mpbird φABran.G
67 25 ovollb2 G:2ABran.Gvol*ABsupranseq1+absG*<
68 23 66 67 syl2anc φvol*ABsupranseq1+absG*<
69 addrid kk+0=k
70 69 adantl φxkk+0=k
71 nnuz =1
72 35 71 eleqtri 11
73 72 a1i φx11
74 simpr φxx
75 74 71 eleqtrdi φxx1
76 rge0ssre 0+∞
77 27 adantr φxseq1+absG:0+∞
78 ffvelcdm seq1+absG:0+∞1seq1+absG10+∞
79 77 35 78 sylancl φxseq1+absG10+∞
80 76 79 sselid φxseq1+absG1
81 80 recnd φxseq1+absG1
82 23 ad2antrr φxk1+1xG:2
83 elfzuz k1+1xk1+1
84 83 adantl φxk1+1xk1+1
85 df-2 2=1+1
86 85 fveq2i 2=1+1
87 84 86 eleqtrrdi φxk1+1xk2
88 eluz2nn k2k
89 87 88 syl φxk1+1xk
90 24 ovolfsval G:2kabsGk=2ndGk1stGk
91 82 89 90 syl2anc φxk1+1xabsGk=2ndGk1stGk
92 eqeq1 n=kn=1k=1
93 92 ifbid n=kifn=1AB00=ifk=1AB00
94 opex 00V
95 52 94 ifex ifk=1AB00V
96 93 4 95 fvmpt kGk=ifk=1AB00
97 89 96 syl φxk1+1xGk=ifk=1AB00
98 eluz2b3 k2kk1
99 98 simprbi k2k1
100 87 99 syl φxk1+1xk1
101 100 neneqd φxk1+1x¬k=1
102 101 iffalsed φxk1+1xifk=1AB00=00
103 97 102 eqtrd φxk1+1xGk=00
104 103 fveq2d φxk1+1x2ndGk=2nd00
105 c0ex 0V
106 105 105 op2nd 2nd00=0
107 104 106 eqtrdi φxk1+1x2ndGk=0
108 103 fveq2d φxk1+1x1stGk=1st00
109 105 105 op1st 1st00=0
110 108 109 eqtrdi φxk1+1x1stGk=0
111 107 110 oveq12d φxk1+1x2ndGk1stGk=00
112 0m0e0 00=0
113 111 112 eqtrdi φxk1+1x2ndGk1stGk=0
114 91 113 eqtrd φxk1+1xabsGk=0
115 70 73 75 81 114 seqid2 φxseq1+absG1=seq1+absGx
116 1z 1
117 23 adantr φxG:2
118 24 ovolfsval G:21absG1=2ndG11stG1
119 117 35 118 sylancl φxabsG1=2ndG11stG1
120 54 fveq2i 2ndG1=2ndAB
121 47 adantr φx2ndAB=B
122 120 121 eqtrid φx2ndG1=B
123 54 fveq2i 1stG1=1stAB
124 38 adantr φx1stAB=A
125 123 124 eqtrid φx1stG1=A
126 122 125 oveq12d φx2ndG11stG1=BA
127 119 126 eqtrd φxabsG1=BA
128 116 127 seq1i φxseq1+absG1=BA
129 115 128 eqtr3d φxseq1+absGx=BA
130 33 leidd φBABA
131 130 adantr φxBABA
132 129 131 eqbrtrd φxseq1+absGxBA
133 132 ralrimiva φxseq1+absGxBA
134 27 ffnd φseq1+absGFn
135 breq1 z=seq1+absGxzBAseq1+absGxBA
136 135 ralrn seq1+absGFnzranseq1+absGzBAxseq1+absGxBA
137 134 136 syl φzranseq1+absGzBAxseq1+absGxBA
138 133 137 mpbird φzranseq1+absGzBA
139 supxrleub ranseq1+absG*BA*supranseq1+absG*<BAzranseq1+absGzBA
140 30 34 139 syl2anc φsupranseq1+absG*<BAzranseq1+absGzBA
141 138 140 mpbird φsupranseq1+absG*<BA
142 8 32 34 68 141 xrletrd φvol*ABBA