Metamath Proof Explorer


Theorem plymulx0

Description: Coefficients of a polynomial multiplied by Xp . (Contributed by Thierry Arnoux, 25-Sep-2018)

Ref Expression
Assertion plymulx0 FPoly0𝑝coeffF×fXp=n0ifn=00coeffFn1

Proof

Step Hyp Ref Expression
1 eldifi FPoly0𝑝FPoly
2 ax-resscn
3 1re 1
4 plyid 1XpPoly
5 2 3 4 mp2an XpPoly
6 5 a1i FPoly0𝑝XpPoly
7 simprl FPoly0𝑝xyx
8 simprr FPoly0𝑝xyy
9 7 8 readdcld FPoly0𝑝xyx+y
10 7 8 remulcld FPoly0𝑝xyxy
11 1 6 9 10 plymul FPoly0𝑝F×fXpPoly
12 0re 0
13 eqid coeffF×fXp=coeffF×fXp
14 13 coef2 F×fXpPoly0coeffF×fXp:0
15 11 12 14 sylancl FPoly0𝑝coeffF×fXp:0
16 15 feqmptd FPoly0𝑝coeffF×fXp=n0coeffF×fXpn
17 cnex V
18 17 a1i FPoly0𝑝V
19 plyf FPolyF:
20 1 19 syl FPoly0𝑝F:
21 plyf XpPolyXp:
22 5 21 ax-mp Xp:
23 22 a1i FPoly0𝑝Xp:
24 simprl FPoly0𝑝xyx
25 simprr FPoly0𝑝xyy
26 24 25 mulcomd FPoly0𝑝xyxy=yx
27 18 20 23 26 caofcom FPoly0𝑝F×fXp=Xp×fF
28 27 fveq2d FPoly0𝑝coeffF×fXp=coeffXp×fF
29 28 fveq1d FPoly0𝑝coeffF×fXpn=coeffXp×fFn
30 29 adantr FPoly0𝑝n0coeffF×fXpn=coeffXp×fFn
31 5 a1i FPoly0𝑝n0XpPoly
32 1 adantr FPoly0𝑝n0FPoly
33 simpr FPoly0𝑝n0n0
34 eqid coeffXp=coeffXp
35 eqid coeffF=coeffF
36 34 35 coemul XpPolyFPolyn0coeffXp×fFn=i=0ncoeffXpicoeffFni
37 31 32 33 36 syl3anc FPoly0𝑝n0coeffXp×fFn=i=0ncoeffXpicoeffFni
38 elfznn0 i0ni0
39 coeidp i0coeffXpi=ifi=110
40 38 39 syl i0ncoeffXpi=ifi=110
41 40 oveq1d i0ncoeffXpicoeffFni=ifi=110coeffFni
42 ovif ifi=110coeffFni=ifi=11coeffFni0coeffFni
43 41 42 eqtrdi i0ncoeffXpicoeffFni=ifi=11coeffFni0coeffFni
44 43 adantl FPoly0𝑝n0i0ncoeffXpicoeffFni=ifi=11coeffFni0coeffFni
45 44 sumeq2dv FPoly0𝑝n0i=0ncoeffXpicoeffFni=i=0nifi=11coeffFni0coeffFni
46 velsn i1i=1
47 46 bicomi i=1i1
48 47 a1i FPoly0𝑝n0i0ni=1i1
49 35 coef2 FPoly0coeffF:0
50 1 12 49 sylancl FPoly0𝑝coeffF:0
51 50 ad2antrr FPoly0𝑝n0i0ncoeffF:0
52 fznn0sub i0nni0
53 52 adantl FPoly0𝑝n0i0nni0
54 51 53 ffvelcdmd FPoly0𝑝n0i0ncoeffFni
55 54 recnd FPoly0𝑝n0i0ncoeffFni
56 55 mullidd FPoly0𝑝n0i0n1coeffFni=coeffFni
57 55 mul02d FPoly0𝑝n0i0n0coeffFni=0
58 48 56 57 ifbieq12d FPoly0𝑝n0i0nifi=11coeffFni0coeffFni=ifi1coeffFni0
59 58 sumeq2dv FPoly0𝑝n0i=0nifi=11coeffFni0coeffFni=i=0nifi1coeffFni0
60 eqeq2 0=ifn=00coeffFn1i=0nifi1coeffFni0=0i=0nifi1coeffFni0=ifn=00coeffFn1
61 eqeq2 coeffFn1=ifn=00coeffFn1i=0nifi1coeffFni0=coeffFn1i=0nifi1coeffFni0=ifn=00coeffFn1
62 oveq2 n=00n=00
63 0z 0
64 fzsn 000=0
65 63 64 ax-mp 00=0
66 62 65 eqtrdi n=00n=0
67 elsni i0i=0
68 67 adantl n=0i0i=0
69 ax-1ne0 10
70 69 nesymi ¬0=1
71 eqeq1 i=0i=10=1
72 70 71 mtbiri i=0¬i=1
73 68 72 syl n=0i0¬i=1
74 47 notbii ¬i=1¬i1
75 74 biimpi ¬i=1¬i1
76 iffalse ¬i1ifi1coeffFni0=0
77 73 75 76 3syl n=0i0ifi1coeffFni0=0
78 66 77 sumeq12rdv n=0i=0nifi1coeffFni0=i00
79 snfi 0Fin
80 79 olci 000Fin
81 sumz 000Fini00=0
82 80 81 ax-mp i00=0
83 78 82 eqtrdi n=0i=0nifi1coeffFni0=0
84 83 adantl FPoly0𝑝n0n=0i=0nifi1coeffFni0=0
85 simpll FPoly0𝑝n0¬n=0FPoly0𝑝
86 33 adantr FPoly0𝑝n0¬n=0n0
87 simpr FPoly0𝑝n0¬n=0¬n=0
88 87 neqned FPoly0𝑝n0¬n=0n0
89 elnnne0 nn0n0
90 86 88 89 sylanbrc FPoly0𝑝n0¬n=0n
91 1nn0 10
92 91 a1i FPoly0𝑝n10
93 simpr FPoly0𝑝nn
94 93 nnnn0d FPoly0𝑝nn0
95 93 nnge1d FPoly0𝑝n1n
96 elfz2nn0 10n10n01n
97 92 94 95 96 syl3anbrc FPoly0𝑝n10n
98 97 snssd FPoly0𝑝n10n
99 50 ad2antrr FPoly0𝑝ni1coeffF:0
100 oveq2 i=1ni=n1
101 46 100 sylbi i1ni=n1
102 101 adantl FPoly0𝑝ni1ni=n1
103 nnm1nn0 nn10
104 103 ad2antlr FPoly0𝑝ni1n10
105 102 104 eqeltrd FPoly0𝑝ni1ni0
106 99 105 ffvelcdmd FPoly0𝑝ni1coeffFni
107 106 recnd FPoly0𝑝ni1coeffFni
108 107 ralrimiva FPoly0𝑝ni1coeffFni
109 fzfi 0nFin
110 109 olci 0n00nFin
111 110 a1i FPoly0𝑝n0n00nFin
112 sumss2 10ni1coeffFni0n00nFini1coeffFni=i=0nifi1coeffFni0
113 98 108 111 112 syl21anc FPoly0𝑝ni1coeffFni=i=0nifi1coeffFni0
114 50 adantr FPoly0𝑝ncoeffF:0
115 103 adantl FPoly0𝑝nn10
116 114 115 ffvelcdmd FPoly0𝑝ncoeffFn1
117 116 recnd FPoly0𝑝ncoeffFn1
118 100 fveq2d i=1coeffFni=coeffFn1
119 118 sumsn 1coeffFn1i1coeffFni=coeffFn1
120 3 117 119 sylancr FPoly0𝑝ni1coeffFni=coeffFn1
121 113 120 eqtr3d FPoly0𝑝ni=0nifi1coeffFni0=coeffFn1
122 85 90 121 syl2anc FPoly0𝑝n0¬n=0i=0nifi1coeffFni0=coeffFn1
123 60 61 84 122 ifbothda FPoly0𝑝n0i=0nifi1coeffFni0=ifn=00coeffFn1
124 59 123 eqtrd FPoly0𝑝n0i=0nifi=11coeffFni0coeffFni=ifn=00coeffFn1
125 37 45 124 3eqtrd FPoly0𝑝n0coeffXp×fFn=ifn=00coeffFn1
126 30 125 eqtrd FPoly0𝑝n0coeffF×fXpn=ifn=00coeffFn1
127 126 mpteq2dva FPoly0𝑝n0coeffF×fXpn=n0ifn=00coeffFn1
128 16 127 eqtrd FPoly0𝑝coeffF×fXp=n0ifn=00coeffFn1