| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
|
| 2 |
|
ax-resscn |
|
| 3 |
|
1re |
|
| 4 |
|
plyid |
|
| 5 |
2 3 4
|
mp2an |
|
| 6 |
5
|
a1i |
|
| 7 |
|
simprl |
|
| 8 |
|
simprr |
|
| 9 |
7 8
|
readdcld |
|
| 10 |
7 8
|
remulcld |
|
| 11 |
1 6 9 10
|
plymul |
|
| 12 |
|
0re |
|
| 13 |
|
eqid |
|
| 14 |
13
|
coef2 |
|
| 15 |
11 12 14
|
sylancl |
|
| 16 |
15
|
feqmptd |
|
| 17 |
|
cnex |
|
| 18 |
17
|
a1i |
|
| 19 |
|
plyf |
|
| 20 |
1 19
|
syl |
|
| 21 |
|
plyf |
|
| 22 |
5 21
|
ax-mp |
|
| 23 |
22
|
a1i |
|
| 24 |
|
simprl |
|
| 25 |
|
simprr |
|
| 26 |
24 25
|
mulcomd |
|
| 27 |
18 20 23 26
|
caofcom |
|
| 28 |
27
|
fveq2d |
|
| 29 |
28
|
fveq1d |
|
| 30 |
29
|
adantr |
|
| 31 |
5
|
a1i |
|
| 32 |
1
|
adantr |
|
| 33 |
|
simpr |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
34 35
|
coemul |
|
| 37 |
31 32 33 36
|
syl3anc |
|
| 38 |
|
elfznn0 |
|
| 39 |
|
coeidp |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
oveq1d |
|
| 42 |
|
ovif |
|
| 43 |
41 42
|
eqtrdi |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
sumeq2dv |
|
| 46 |
|
velsn |
|
| 47 |
46
|
bicomi |
|
| 48 |
47
|
a1i |
|
| 49 |
35
|
coef2 |
|
| 50 |
1 12 49
|
sylancl |
|
| 51 |
50
|
ad2antrr |
|
| 52 |
|
fznn0sub |
|
| 53 |
52
|
adantl |
|
| 54 |
51 53
|
ffvelcdmd |
|
| 55 |
54
|
recnd |
|
| 56 |
55
|
mullidd |
|
| 57 |
55
|
mul02d |
|
| 58 |
48 56 57
|
ifbieq12d |
|
| 59 |
58
|
sumeq2dv |
|
| 60 |
|
eqeq2 |
|
| 61 |
|
eqeq2 |
|
| 62 |
|
oveq2 |
|
| 63 |
|
0z |
|
| 64 |
|
fzsn |
|
| 65 |
63 64
|
ax-mp |
|
| 66 |
62 65
|
eqtrdi |
|
| 67 |
|
elsni |
|
| 68 |
67
|
adantl |
|
| 69 |
|
ax-1ne0 |
|
| 70 |
69
|
nesymi |
|
| 71 |
|
eqeq1 |
|
| 72 |
70 71
|
mtbiri |
|
| 73 |
47
|
notbii |
|
| 74 |
73
|
biimpi |
|
| 75 |
|
iffalse |
|
| 76 |
68 72 74 75
|
4syl |
|
| 77 |
66 76
|
sumeq12rdv |
|
| 78 |
|
snfi |
|
| 79 |
78
|
olci |
|
| 80 |
|
sumz |
|
| 81 |
79 80
|
ax-mp |
|
| 82 |
77 81
|
eqtrdi |
|
| 83 |
82
|
adantl |
|
| 84 |
|
simpll |
|
| 85 |
33
|
adantr |
|
| 86 |
|
simpr |
|
| 87 |
86
|
neqned |
|
| 88 |
|
elnnne0 |
|
| 89 |
85 87 88
|
sylanbrc |
|
| 90 |
|
1nn0 |
|
| 91 |
90
|
a1i |
|
| 92 |
|
simpr |
|
| 93 |
92
|
nnnn0d |
|
| 94 |
92
|
nnge1d |
|
| 95 |
|
elfz2nn0 |
|
| 96 |
91 93 94 95
|
syl3anbrc |
|
| 97 |
96
|
snssd |
|
| 98 |
50
|
ad2antrr |
|
| 99 |
|
oveq2 |
|
| 100 |
46 99
|
sylbi |
|
| 101 |
100
|
adantl |
|
| 102 |
|
nnm1nn0 |
|
| 103 |
102
|
ad2antlr |
|
| 104 |
101 103
|
eqeltrd |
|
| 105 |
98 104
|
ffvelcdmd |
|
| 106 |
105
|
recnd |
|
| 107 |
106
|
ralrimiva |
|
| 108 |
|
fzfi |
|
| 109 |
108
|
olci |
|
| 110 |
109
|
a1i |
|
| 111 |
|
sumss2 |
|
| 112 |
97 107 110 111
|
syl21anc |
|
| 113 |
50
|
adantr |
|
| 114 |
102
|
adantl |
|
| 115 |
113 114
|
ffvelcdmd |
|
| 116 |
115
|
recnd |
|
| 117 |
99
|
fveq2d |
|
| 118 |
117
|
sumsn |
|
| 119 |
3 116 118
|
sylancr |
|
| 120 |
112 119
|
eqtr3d |
|
| 121 |
84 89 120
|
syl2anc |
|
| 122 |
60 61 83 121
|
ifbothda |
|
| 123 |
59 122
|
eqtrd |
|
| 124 |
37 45 123
|
3eqtrd |
|
| 125 |
30 124
|
eqtrd |
|
| 126 |
125
|
mpteq2dva |
|
| 127 |
16 126
|
eqtrd |
|