Metamath Proof Explorer


Theorem prdstotbnd

Description: The product metric over finite index set is totally bounded if all the factors are totally bounded. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses prdsbnd.y Y=S𝑠R
prdsbnd.b B=BaseY
prdsbnd.v V=BaseRx
prdsbnd.e E=distRxV×V
prdsbnd.d D=distY
prdsbnd.s φSW
prdsbnd.i φIFin
prdsbnd.r φRFnI
prdstotbnd.m φxIETotBndV
Assertion prdstotbnd φDTotBndB

Proof

Step Hyp Ref Expression
1 prdsbnd.y Y=S𝑠R
2 prdsbnd.b B=BaseY
3 prdsbnd.v V=BaseRx
4 prdsbnd.e E=distRxV×V
5 prdsbnd.d D=distY
6 prdsbnd.s φSW
7 prdsbnd.i φIFin
8 prdsbnd.r φRFnI
9 prdstotbnd.m φxIETotBndV
10 eqid S𝑠xIRx=S𝑠xIRx
11 eqid BaseS𝑠xIRx=BaseS𝑠xIRx
12 eqid distS𝑠xIRx=distS𝑠xIRx
13 fvexd φxIRxV
14 totbndmet ETotBndVEMetV
15 9 14 syl φxIEMetV
16 10 11 3 4 12 6 7 13 15 prdsmet φdistS𝑠xIRxMetBaseS𝑠xIRx
17 dffn5 RFnIR=xIRx
18 8 17 sylib φR=xIRx
19 18 oveq2d φS𝑠R=S𝑠xIRx
20 1 19 eqtrid φY=S𝑠xIRx
21 20 fveq2d φdistY=distS𝑠xIRx
22 5 21 eqtrid φD=distS𝑠xIRx
23 20 fveq2d φBaseY=BaseS𝑠xIRx
24 2 23 eqtrid φB=BaseS𝑠xIRx
25 24 fveq2d φMetB=MetBaseS𝑠xIRx
26 16 22 25 3eltr4d φDMetB
27 7 adantr φr+IFin
28 istotbnd3 ETotBndVEMetVr+w𝒫VFinzwzballEr=V
29 28 simprbi ETotBndVr+w𝒫VFinzwzballEr=V
30 9 29 syl φxIr+w𝒫VFinzwzballEr=V
31 30 r19.21bi φxIr+w𝒫VFinzwzballEr=V
32 df-rex w𝒫VFinzwzballEr=Vww𝒫VFinzwzballEr=V
33 rexv wVw𝒫VFinzwzballEr=Vww𝒫VFinzwzballEr=V
34 32 33 bitr4i w𝒫VFinzwzballEr=VwVw𝒫VFinzwzballEr=V
35 31 34 sylib φxIr+wVw𝒫VFinzwzballEr=V
36 35 an32s φr+xIwVw𝒫VFinzwzballEr=V
37 36 ralrimiva φr+xIwVw𝒫VFinzwzballEr=V
38 eleq1 w=fxw𝒫VFinfx𝒫VFin
39 iuneq1 w=fxzwzballEr=zfxzballEr
40 39 eqeq1d w=fxzwzballEr=VzfxzballEr=V
41 38 40 anbi12d w=fxw𝒫VFinzwzballEr=Vfx𝒫VFinzfxzballEr=V
42 41 ac6sfi IFinxIwVw𝒫VFinzwzballEr=Vff:IVxIfx𝒫VFinzfxzballEr=V
43 27 37 42 syl2anc φr+ff:IVxIfx𝒫VFinzfxzballEr=V
44 elfpw fx𝒫VFinfxVfxFin
45 44 simplbi fx𝒫VFinfxV
46 45 adantr fx𝒫VFinzfxzballEr=VfxV
47 46 ralimi xIfx𝒫VFinzfxzballEr=VxIfxV
48 47 ad2antll φr+f:IVxIfx𝒫VFinzfxzballEr=VxIfxV
49 ss2ixp xIfxVxIfxxIV
50 48 49 syl φr+f:IVxIfx𝒫VFinzfxzballEr=VxIfxxIV
51 fnfi RFnIIFinRFin
52 8 7 51 syl2anc φRFin
53 8 fndmd φdomR=I
54 1 6 52 2 53 prdsbas φB=xIBaseRx
55 3 rgenw xIV=BaseRx
56 ixpeq2 xIV=BaseRxxIV=xIBaseRx
57 55 56 ax-mp xIV=xIBaseRx
58 54 57 eqtr4di φB=xIV
59 58 ad2antrr φr+f:IVxIfx𝒫VFinzfxzballEr=VB=xIV
60 50 59 sseqtrrd φr+f:IVxIfx𝒫VFinzfxzballEr=VxIfxB
61 27 adantr φr+f:IVxIfx𝒫VFinzfxzballEr=VIFin
62 44 simprbi fx𝒫VFinfxFin
63 62 adantr fx𝒫VFinzfxzballEr=VfxFin
64 63 ralimi xIfx𝒫VFinzfxzballEr=VxIfxFin
65 64 ad2antll φr+f:IVxIfx𝒫VFinzfxzballEr=VxIfxFin
66 ixpfi IFinxIfxFinxIfxFin
67 61 65 66 syl2anc φr+f:IVxIfx𝒫VFinzfxzballEr=VxIfxFin
68 elfpw xIfx𝒫BFinxIfxBxIfxFin
69 60 67 68 sylanbrc φr+f:IVxIfx𝒫VFinzfxzballEr=VxIfx𝒫BFin
70 metxmet DMetBD∞MetB
71 26 70 syl φD∞MetB
72 rpxr r+r*
73 blssm D∞MetByBr*yballDrB
74 73 3expa D∞MetByBr*yballDrB
75 74 an32s D∞MetBr*yByballDrB
76 75 ralrimiva D∞MetBr*yByballDrB
77 71 72 76 syl2an φr+yByballDrB
78 77 adantr φr+f:IVxIfx𝒫VFinzfxzballEr=VyByballDrB
79 ssralv xIfxByByballDrByxIfxyballDrB
80 60 78 79 sylc φr+f:IVxIfx𝒫VFinzfxzballEr=VyxIfxyballDrB
81 iunss yxIfxyballDrByxIfxyballDrB
82 80 81 sylibr φr+f:IVxIfx𝒫VFinzfxzballEr=VyxIfxyballDrB
83 61 adantr φr+f:IVxIfx𝒫VFinzfxzballEr=VgBIFin
84 59 eleq2d φr+f:IVxIfx𝒫VFinzfxzballEr=VgBgxIV
85 vex gV
86 85 elixp gxIVgFnIxIgxV
87 86 simprbi gxIVxIgxV
88 df-rex zfxgxzballErzzfxgxzballEr
89 eliun gxzfxzballErzfxgxzballEr
90 rexv zVzfxgxzballErzzfxgxzballEr
91 88 89 90 3bitr4i gxzfxzballErzVzfxgxzballEr
92 eleq2 zfxzballEr=VgxzfxzballErgxV
93 91 92 bitr3id zfxzballEr=VzVzfxgxzballErgxV
94 93 biimprd zfxzballEr=VgxVzVzfxgxzballEr
95 94 adantl fx𝒫VFinzfxzballEr=VgxVzVzfxgxzballEr
96 95 ral2imi xIfx𝒫VFinzfxzballEr=VxIgxVxIzVzfxgxzballEr
97 96 ad2antll φr+f:IVxIfx𝒫VFinzfxzballEr=VxIgxVxIzVzfxgxzballEr
98 87 97 syl5 φr+f:IVxIfx𝒫VFinzfxzballEr=VgxIVxIzVzfxgxzballEr
99 84 98 sylbid φr+f:IVxIfx𝒫VFinzfxzballEr=VgBxIzVzfxgxzballEr
100 99 imp φr+f:IVxIfx𝒫VFinzfxzballEr=VgBxIzVzfxgxzballEr
101 eleq1 z=yxzfxyxfx
102 oveq1 z=yxzballEr=yxballEr
103 102 eleq2d z=yxgxzballErgxyxballEr
104 101 103 anbi12d z=yxzfxgxzballEryxfxgxyxballEr
105 104 ac6sfi IFinxIzVzfxgxzballEryy:IVxIyxfxgxyxballEr
106 83 100 105 syl2anc φr+f:IVxIfx𝒫VFinzfxzballEr=VgByy:IVxIyxfxgxyxballEr
107 ffn y:IVyFnI
108 simpl yxfxgxyxballEryxfx
109 108 ralimi xIyxfxgxyxballErxIyxfx
110 107 109 anim12i y:IVxIyxfxgxyxballEryFnIxIyxfx
111 vex yV
112 111 elixp yxIfxyFnIxIyxfx
113 110 112 sylibr y:IVxIyxfxgxyxballEryxIfx
114 113 adantl φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballEryxIfx
115 84 biimpa φr+f:IVxIfx𝒫VFinzfxzballEr=VgBgxIV
116 ixpfn gxIVgFnI
117 115 116 syl φr+f:IVxIfx𝒫VFinzfxzballEr=VgBgFnI
118 117 adantr φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballErgFnI
119 simpr yxfxgxyxballErgxyxballEr
120 119 ralimi xIyxfxgxyxballErxIgxyxballEr
121 120 ad2antll φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballErxIgxyxballEr
122 85 elixp gxIyxballErgFnIxIgxyxballEr
123 118 121 122 sylanbrc φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballErgxIyxballEr
124 simp-4l φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballErφ
125 50 ad2antrr φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballErxIfxxIV
126 125 114 sseldd φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballEryxIV
127 124 58 syl φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballErB=xIV
128 126 127 eleqtrrd φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballEryB
129 simp-4r φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballErr+
130 fveq2 y=xRy=Rx
131 130 cbvmptv yIRy=xIRx
132 131 oveq2i S𝑠yIRy=S𝑠xIRx
133 20 132 eqtr4di φY=S𝑠yIRy
134 133 fveq2d φdistY=distS𝑠yIRy
135 5 134 eqtrid φD=distS𝑠yIRy
136 135 fveq2d φballD=balldistS𝑠yIRy
137 136 oveqdr φyBr+yballDr=yballdistS𝑠yIRyr
138 eqid BaseS𝑠yIRy=BaseS𝑠yIRy
139 eqid distS𝑠yIRy=distS𝑠yIRy
140 6 adantr φyBr+SW
141 7 adantr φyBr+IFin
142 fvexd φyBr+xIRxV
143 metxmet EMetVE∞MetV
144 15 143 syl φxIE∞MetV
145 144 adantlr φyBr+xIE∞MetV
146 simprl φyBr+yB
147 133 fveq2d φBaseY=BaseS𝑠yIRy
148 2 147 eqtrid φB=BaseS𝑠yIRy
149 148 adantr φyBr+B=BaseS𝑠yIRy
150 146 149 eleqtrd φyBr+yBaseS𝑠yIRy
151 72 ad2antll φyBr+r*
152 rpgt0 r+0<r
153 152 ad2antll φyBr+0<r
154 132 138 3 4 139 140 141 142 145 150 151 153 prdsbl φyBr+yballdistS𝑠yIRyr=xIyxballEr
155 137 154 eqtrd φyBr+yballDr=xIyxballEr
156 124 128 129 155 syl12anc φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballEryballDr=xIyxballEr
157 123 156 eleqtrrd φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballErgyballDr
158 114 157 jca φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballEryxIfxgyballDr
159 158 ex φr+f:IVxIfx𝒫VFinzfxzballEr=VgBy:IVxIyxfxgxyxballEryxIfxgyballDr
160 159 eximdv φr+f:IVxIfx𝒫VFinzfxzballEr=VgByy:IVxIyxfxgxyxballEryyxIfxgyballDr
161 df-rex yxIfxgyballDryyxIfxgyballDr
162 160 161 imbitrrdi φr+f:IVxIfx𝒫VFinzfxzballEr=VgByy:IVxIyxfxgxyxballEryxIfxgyballDr
163 106 162 mpd φr+f:IVxIfx𝒫VFinzfxzballEr=VgByxIfxgyballDr
164 163 ex φr+f:IVxIfx𝒫VFinzfxzballEr=VgByxIfxgyballDr
165 eliun gyxIfxyballDryxIfxgyballDr
166 164 165 imbitrrdi φr+f:IVxIfx𝒫VFinzfxzballEr=VgBgyxIfxyballDr
167 166 ssrdv φr+f:IVxIfx𝒫VFinzfxzballEr=VByxIfxyballDr
168 82 167 eqssd φr+f:IVxIfx𝒫VFinzfxzballEr=VyxIfxyballDr=B
169 iuneq1 v=xIfxyvyballDr=yxIfxyballDr
170 169 eqeq1d v=xIfxyvyballDr=ByxIfxyballDr=B
171 170 rspcev xIfx𝒫BFinyxIfxyballDr=Bv𝒫BFinyvyballDr=B
172 69 168 171 syl2anc φr+f:IVxIfx𝒫VFinzfxzballEr=Vv𝒫BFinyvyballDr=B
173 43 172 exlimddv φr+v𝒫BFinyvyballDr=B
174 173 ralrimiva φr+v𝒫BFinyvyballDr=B
175 istotbnd3 DTotBndBDMetBr+v𝒫BFinyvyballDr=B
176 26 174 175 sylanbrc φDTotBndB