Metamath Proof Explorer


Theorem prmreclem4

Description: Lemma for prmrec . Show by induction that the indexed (nondisjoint) union Wk is at most the size of the prime reciprocal series. The key counting lemma is hashdvds , to show that the number of numbers in 1 ... N that divide k is at most N / k . (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses prmrec.1 F=nifn1n0
prmrec.2 φK
prmrec.3 φN
prmrec.4 M=n1N|p1K¬pn
prmrec.5 φseq1+Fdom
prmrec.6 φkK+1ifk1k0<12
prmrec.7 W=pn1N|ppn
Assertion prmreclem4 φNKk=K+1NWkNk=K+1Nifk1k0

Proof

Step Hyp Ref Expression
1 prmrec.1 F=nifn1n0
2 prmrec.2 φK
3 prmrec.3 φN
4 prmrec.4 M=n1N|p1K¬pn
5 prmrec.5 φseq1+Fdom
6 prmrec.6 φkK+1ifk1k0<12
7 prmrec.7 W=pn1N|ppn
8 oveq2 x=KK+1x=K+1K
9 8 iuneq1d x=Kk=K+1xWk=k=K+1KWk
10 9 fveq2d x=Kk=K+1xWk=k=K+1KWk
11 8 sumeq1d x=Kk=K+1xifk1k0=k=K+1Kifk1k0
12 11 oveq2d x=KNk=K+1xifk1k0=Nk=K+1Kifk1k0
13 10 12 breq12d x=Kk=K+1xWkNk=K+1xifk1k0k=K+1KWkNk=K+1Kifk1k0
14 13 imbi2d x=Kφk=K+1xWkNk=K+1xifk1k0φk=K+1KWkNk=K+1Kifk1k0
15 oveq2 x=jK+1x=K+1j
16 15 iuneq1d x=jk=K+1xWk=k=K+1jWk
17 16 fveq2d x=jk=K+1xWk=k=K+1jWk
18 15 sumeq1d x=jk=K+1xifk1k0=k=K+1jifk1k0
19 18 oveq2d x=jNk=K+1xifk1k0=Nk=K+1jifk1k0
20 17 19 breq12d x=jk=K+1xWkNk=K+1xifk1k0k=K+1jWkNk=K+1jifk1k0
21 20 imbi2d x=jφk=K+1xWkNk=K+1xifk1k0φk=K+1jWkNk=K+1jifk1k0
22 oveq2 x=j+1K+1x=K+1j+1
23 22 iuneq1d x=j+1k=K+1xWk=k=K+1j+1Wk
24 23 fveq2d x=j+1k=K+1xWk=k=K+1j+1Wk
25 22 sumeq1d x=j+1k=K+1xifk1k0=k=K+1j+1ifk1k0
26 25 oveq2d x=j+1Nk=K+1xifk1k0=Nk=K+1j+1ifk1k0
27 24 26 breq12d x=j+1k=K+1xWkNk=K+1xifk1k0k=K+1j+1WkNk=K+1j+1ifk1k0
28 27 imbi2d x=j+1φk=K+1xWkNk=K+1xifk1k0φk=K+1j+1WkNk=K+1j+1ifk1k0
29 oveq2 x=NK+1x=K+1N
30 29 iuneq1d x=Nk=K+1xWk=k=K+1NWk
31 30 fveq2d x=Nk=K+1xWk=k=K+1NWk
32 29 sumeq1d x=Nk=K+1xifk1k0=k=K+1Nifk1k0
33 32 oveq2d x=NNk=K+1xifk1k0=Nk=K+1Nifk1k0
34 31 33 breq12d x=Nk=K+1xWkNk=K+1xifk1k0k=K+1NWkNk=K+1Nifk1k0
35 34 imbi2d x=Nφk=K+1xWkNk=K+1xifk1k0φk=K+1NWkNk=K+1Nifk1k0
36 0le0 00
37 3 nncnd φN
38 37 mul01d φ N0=0
39 36 38 breqtrrid φ0 N0
40 2 nnred φK
41 40 ltp1d φK<K+1
42 2 nnzd φK
43 42 peano2zd φK+1
44 fzn K+1KK<K+1K+1K=
45 43 42 44 syl2anc φK<K+1K+1K=
46 41 45 mpbid φK+1K=
47 46 iuneq1d φk=K+1KWk=kWk
48 0iun kWk=
49 47 48 eqtrdi φk=K+1KWk=
50 49 fveq2d φk=K+1KWk=
51 hash0 =0
52 50 51 eqtrdi φk=K+1KWk=0
53 46 sumeq1d φk=K+1Kifk1k0=kifk1k0
54 sum0 kifk1k0=0
55 53 54 eqtrdi φk=K+1Kifk1k0=0
56 55 oveq2d φNk=K+1Kifk1k0= N0
57 39 52 56 3brtr4d φk=K+1KWkNk=K+1Kifk1k0
58 fzfi 1NFin
59 elfzuz kK+1jkK+1
60 2 peano2nnd φK+1
61 eluznn K+1kK+1k
62 60 61 sylan φkK+1k
63 eleq1 p=kpk
64 breq1 p=kpnkn
65 63 64 anbi12d p=kppnkkn
66 65 rabbidv p=kn1N|ppn=n1N|kkn
67 ovex 1NV
68 67 rabex n1N|kknV
69 66 7 68 fvmpt kWk=n1N|kkn
70 69 adantl φkWk=n1N|kkn
71 ssrab2 n1N|kkn1N
72 70 71 eqsstrdi φkWk1N
73 62 72 syldan φkK+1Wk1N
74 59 73 sylan2 φkK+1jWk1N
75 74 ralrimiva φkK+1jWk1N
76 75 adantr φjKkK+1jWk1N
77 iunss k=K+1jWk1NkK+1jWk1N
78 76 77 sylibr φjKk=K+1jWk1N
79 ssfi 1NFink=K+1jWk1Nk=K+1jWkFin
80 58 78 79 sylancr φjKk=K+1jWkFin
81 hashcl k=K+1jWkFink=K+1jWk0
82 80 81 syl φjKk=K+1jWk0
83 82 nn0red φjKk=K+1jWk
84 3 nnred φN
85 84 adantr φjKN
86 fzfid φjKK+1jFin
87 60 adantr φjKK+1
88 87 59 61 syl2an φjKkK+1jk
89 nnrecre k1k
90 0re 0
91 ifcl 1k0ifk1k0
92 89 90 91 sylancl kifk1k0
93 88 92 syl φjKkK+1jifk1k0
94 86 93 fsumrecl φjKk=K+1jifk1k0
95 85 94 remulcld φjKNk=K+1jifk1k0
96 prmnn j+1j+1
97 96 nnrecred j+11j+1
98 97 adantl φjKj+11j+1
99 0red φjK¬j+10
100 98 99 ifclda φjKifj+11j+10
101 85 100 remulcld φjKNifj+11j+10
102 83 95 101 leadd1d φjKk=K+1jWkNk=K+1jifk1k0k=K+1jWk+Nifj+11j+10Nk=K+1jifk1k0+Nifj+11j+10
103 eluzp1p1 jKj+1K+1
104 103 adantl φjKj+1K+1
105 simpl φjKφ
106 elfzuz kK+1j+1kK+1
107 92 recnd kifk1k0
108 62 107 syl φkK+1ifk1k0
109 105 106 108 syl2an φjKkK+1j+1ifk1k0
110 eleq1 k=j+1kj+1
111 oveq2 k=j+11k=1j+1
112 110 111 ifbieq1d k=j+1ifk1k0=ifj+11j+10
113 104 109 112 fsumm1 φjKk=K+1j+1ifk1k0=k=K+1j+1-1ifk1k0+ifj+11j+10
114 eluzelz jKj
115 114 adantl φjKj
116 115 zcnd φjKj
117 ax-1cn 1
118 pncan j1j+1-1=j
119 116 117 118 sylancl φjKj+1-1=j
120 119 oveq2d φjKK+1j+1-1=K+1j
121 120 sumeq1d φjKk=K+1j+1-1ifk1k0=k=K+1jifk1k0
122 121 oveq1d φjKk=K+1j+1-1ifk1k0+ifj+11j+10=k=K+1jifk1k0+ifj+11j+10
123 113 122 eqtrd φjKk=K+1j+1ifk1k0=k=K+1jifk1k0+ifj+11j+10
124 123 oveq2d φjKNk=K+1j+1ifk1k0=Nk=K+1jifk1k0+ifj+11j+10
125 37 adantr φjKN
126 94 recnd φjKk=K+1jifk1k0
127 100 recnd φjKifj+11j+10
128 125 126 127 adddid φjKNk=K+1jifk1k0+ifj+11j+10=Nk=K+1jifk1k0+Nifj+11j+10
129 124 128 eqtrd φjKNk=K+1j+1ifk1k0=Nk=K+1jifk1k0+Nifj+11j+10
130 129 breq2d φjKk=K+1jWk+Nifj+11j+10Nk=K+1j+1ifk1k0k=K+1jWk+Nifj+11j+10Nk=K+1jifk1k0+Nifj+11j+10
131 102 130 bitr4d φjKk=K+1jWkNk=K+1jifk1k0k=K+1jWk+Nifj+11j+10Nk=K+1j+1ifk1k0
132 106 73 sylan2 φkK+1j+1Wk1N
133 132 ralrimiva φkK+1j+1Wk1N
134 133 adantr φjKkK+1j+1Wk1N
135 iunss k=K+1j+1Wk1NkK+1j+1Wk1N
136 134 135 sylibr φjKk=K+1j+1Wk1N
137 ssfi 1NFink=K+1j+1Wk1Nk=K+1j+1WkFin
138 58 136 137 sylancr φjKk=K+1j+1WkFin
139 hashcl k=K+1j+1WkFink=K+1j+1Wk0
140 138 139 syl φjKk=K+1j+1Wk0
141 140 nn0red φjKk=K+1j+1Wk
142 fveq2 k=j+1Wk=Wj+1
143 142 sseq1d k=j+1Wk1NWj+11N
144 72 ralrimiva φkWk1N
145 144 adantr φjKkWk1N
146 eluznn KjKj
147 2 146 sylan φjKj
148 147 peano2nnd φjKj+1
149 143 145 148 rspcdva φjKWj+11N
150 ssfi 1NFinWj+11NWj+1Fin
151 58 149 150 sylancr φjKWj+1Fin
152 hashcl Wj+1FinWj+10
153 151 152 syl φjKWj+10
154 153 nn0red φjKWj+1
155 83 154 readdcld φjKk=K+1jWk+Wj+1
156 83 101 readdcld φjKk=K+1jWk+Nifj+11j+10
157 43 adantr φjKK+1
158 simpr φjKjK
159 2 nncnd φK
160 159 adantr φjKK
161 pncan K1K+1-1=K
162 160 117 161 sylancl φjKK+1-1=K
163 162 fveq2d φjKK+1-1=K
164 158 163 eleqtrrd φjKjK+1-1
165 fzsuc2 K+1jK+1-1K+1j+1=K+1jj+1
166 157 164 165 syl2anc φjKK+1j+1=K+1jj+1
167 166 iuneq1d φjKk=K+1j+1Wk=kK+1jj+1Wk
168 iunxun kK+1jj+1Wk=k=K+1jWkkj+1Wk
169 ovex j+1V
170 169 142 iunxsn kj+1Wk=Wj+1
171 170 uneq2i k=K+1jWkkj+1Wk=k=K+1jWkWj+1
172 168 171 eqtri kK+1jj+1Wk=k=K+1jWkWj+1
173 167 172 eqtrdi φjKk=K+1j+1Wk=k=K+1jWkWj+1
174 173 fveq2d φjKk=K+1j+1Wk=k=K+1jWkWj+1
175 hashun2 k=K+1jWkFinWj+1Fink=K+1jWkWj+1k=K+1jWk+Wj+1
176 80 151 175 syl2anc φjKk=K+1jWkWj+1k=K+1jWk+Wj+1
177 174 176 eqbrtrd φjKk=K+1j+1Wkk=K+1jWk+Wj+1
178 85 148 nndivred φjKNj+1
179 flle Nj+1Nj+1Nj+1
180 178 179 syl φjKNj+1Nj+1
181 elfznn n1Nn
182 181 nncnd n1Nn
183 182 subid1d n1Nn0=n
184 183 breq2d n1Nj+1n0j+1n
185 184 rabbiia n1N|j+1n0=n1N|j+1n
186 185 fveq2i n1N|j+1n0=n1N|j+1n
187 1zzd φjK1
188 3 nnnn0d φN0
189 nn0uz 0=0
190 1m1e0 11=0
191 190 fveq2i 11=0
192 189 191 eqtr4i 0=11
193 188 192 eleqtrdi φN11
194 193 adantr φjKN11
195 0zd φjK0
196 148 187 194 195 hashdvds φjKn1N|j+1n0=N0j+11-1-0j+1
197 125 subid1d φjKN0=N
198 197 fvoveq1d φjKN0j+1=Nj+1
199 190 oveq1i 1-1-0=00
200 0m0e0 00=0
201 199 200 eqtri 1-1-0=0
202 201 oveq1i 1-1-0j+1=0j+1
203 148 nncnd φjKj+1
204 148 nnne0d φjKj+10
205 203 204 div0d φjK0j+1=0
206 202 205 eqtrid φjK1-1-0j+1=0
207 206 fveq2d φjK1-1-0j+1=0
208 0z 0
209 flid 00=0
210 208 209 ax-mp 0=0
211 207 210 eqtrdi φjK1-1-0j+1=0
212 198 211 oveq12d φjKN0j+11-1-0j+1=Nj+10
213 178 flcld φjKNj+1
214 213 zcnd φjKNj+1
215 214 subid1d φjKNj+10=Nj+1
216 196 212 215 3eqtrd φjKn1N|j+1n0=Nj+1
217 186 216 eqtr3id φjKn1N|j+1n=Nj+1
218 125 203 204 divrecd φjKNj+1=N1j+1
219 218 eqcomd φjKN1j+1=Nj+1
220 180 217 219 3brtr4d φjKn1N|j+1nN1j+1
221 220 adantr φjKj+1n1N|j+1nN1j+1
222 eleq1 p=j+1pj+1
223 breq1 p=j+1pnj+1n
224 222 223 anbi12d p=j+1ppnj+1j+1n
225 224 rabbidv p=j+1n1N|ppn=n1N|j+1j+1n
226 67 rabex n1N|j+1j+1nV
227 225 7 226 fvmpt j+1Wj+1=n1N|j+1j+1n
228 148 227 syl φjKWj+1=n1N|j+1j+1n
229 228 adantr φjKj+1Wj+1=n1N|j+1j+1n
230 simpr φjKj+1j+1
231 230 biantrurd φjKj+1j+1nj+1j+1n
232 231 rabbidv φjKj+1n1N|j+1n=n1N|j+1j+1n
233 229 232 eqtr4d φjKj+1Wj+1=n1N|j+1n
234 233 fveq2d φjKj+1Wj+1=n1N|j+1n
235 iftrue j+1ifj+11j+10=1j+1
236 235 adantl φjKj+1ifj+11j+10=1j+1
237 236 oveq2d φjKj+1Nifj+11j+10=N1j+1
238 221 234 237 3brtr4d φjKj+1Wj+1Nifj+11j+10
239 36 a1i φjK¬j+100
240 simpl j+1j+1nj+1
241 240 con3i ¬j+1¬j+1j+1n
242 241 ralrimivw ¬j+1n1N¬j+1j+1n
243 rabeq0 n1N|j+1j+1n=n1N¬j+1j+1n
244 242 243 sylibr ¬j+1n1N|j+1j+1n=
245 228 244 sylan9eq φjK¬j+1Wj+1=
246 245 fveq2d φjK¬j+1Wj+1=
247 246 51 eqtrdi φjK¬j+1Wj+1=0
248 iffalse ¬j+1ifj+11j+10=0
249 248 oveq2d ¬j+1Nifj+11j+10= N0
250 38 adantr φjK N0=0
251 249 250 sylan9eqr φjK¬j+1Nifj+11j+10=0
252 239 247 251 3brtr4d φjK¬j+1Wj+1Nifj+11j+10
253 238 252 pm2.61dan φjKWj+1Nifj+11j+10
254 154 101 83 253 leadd2dd φjKk=K+1jWk+Wj+1k=K+1jWk+Nifj+11j+10
255 141 155 156 177 254 letrd φjKk=K+1j+1Wkk=K+1jWk+Nifj+11j+10
256 fzfid φjKK+1j+1Fin
257 62 92 syl φkK+1ifk1k0
258 105 106 257 syl2an φjKkK+1j+1ifk1k0
259 256 258 fsumrecl φjKk=K+1j+1ifk1k0
260 85 259 remulcld φjKNk=K+1j+1ifk1k0
261 letr k=K+1j+1Wkk=K+1jWk+Nifj+11j+10Nk=K+1j+1ifk1k0k=K+1j+1Wkk=K+1jWk+Nifj+11j+10k=K+1jWk+Nifj+11j+10Nk=K+1j+1ifk1k0k=K+1j+1WkNk=K+1j+1ifk1k0
262 141 156 260 261 syl3anc φjKk=K+1j+1Wkk=K+1jWk+Nifj+11j+10k=K+1jWk+Nifj+11j+10Nk=K+1j+1ifk1k0k=K+1j+1WkNk=K+1j+1ifk1k0
263 255 262 mpand φjKk=K+1jWk+Nifj+11j+10Nk=K+1j+1ifk1k0k=K+1j+1WkNk=K+1j+1ifk1k0
264 131 263 sylbid φjKk=K+1jWkNk=K+1jifk1k0k=K+1j+1WkNk=K+1j+1ifk1k0
265 264 expcom jKφk=K+1jWkNk=K+1jifk1k0k=K+1j+1WkNk=K+1j+1ifk1k0
266 265 a2d jKφk=K+1jWkNk=K+1jifk1k0φk=K+1j+1WkNk=K+1j+1ifk1k0
267 14 21 28 35 57 266 uzind4i NKφk=K+1NWkNk=K+1Nifk1k0
268 267 com12 φNKk=K+1NWkNk=K+1Nifk1k0