Metamath Proof Explorer


Theorem psgnunilem1

Description: Lemma for psgnuni . Given two consequtive transpositions in a representation of a permutation, either they are equal and therefore equivalent to the identity, or they are not and it is possible to commute them such that a chosen point in the left transposition is preserved in the right. By repeating this process, a point can be removed from a representation of the identity. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses psgnunilem1.t T=ranpmTrspD
psgnunilem1.d φDV
psgnunilem1.p φPT
psgnunilem1.q φQT
psgnunilem1.a φAdomPI
Assertion psgnunilem1 φPQ=IDrTsTPQ=rsAdomsI¬AdomrI

Proof

Step Hyp Ref Expression
1 psgnunilem1.t T=ranpmTrspD
2 psgnunilem1.d φDV
3 psgnunilem1.p φPT
4 psgnunilem1.q φQT
5 psgnunilem1.a φAdomPI
6 eqid pmTrspD=pmTrspD
7 6 1 pmtrfinv QTQQ=ID
8 4 7 syl φQQ=ID
9 coeq1 P=QPQ=QQ
10 9 eqeq1d P=QPQ=IDQQ=ID
11 8 10 syl5ibrcom φP=QPQ=ID
12 11 adantr φAdomQIP=QPQ=ID
13 12 imp φAdomQIP=QPQ=ID
14 13 orcd φAdomQIP=QPQ=IDrTsTPQ=rsAdomsI¬AdomrI
15 6 1 pmtrfcnv PTP-1=P
16 3 15 syl φP-1=P
17 16 eqcomd φP=P-1
18 17 coeq2d φPQP=PQP-1
19 6 1 pmtrff1o PTP:D1-1 ontoD
20 3 19 syl φP:D1-1 ontoD
21 6 1 pmtrfconj QTP:D1-1 ontoDPQP-1T
22 4 20 21 syl2anc φPQP-1T
23 18 22 eqeltrd φPQPT
24 23 ad2antrr φAdomQIPQPQPT
25 3 ad2antrr φAdomQIPQPT
26 coass PQPP=PQPP
27 6 1 pmtrfinv PTPP=ID
28 3 27 syl φPP=ID
29 28 coeq2d φPQPP=PQID
30 f1of P:D1-1 ontoDP:DD
31 20 30 syl φP:DD
32 6 1 pmtrff1o QTQ:D1-1 ontoD
33 4 32 syl φQ:D1-1 ontoD
34 f1of Q:D1-1 ontoDQ:DD
35 33 34 syl φQ:DD
36 fco P:DDQ:DDPQ:DD
37 31 35 36 syl2anc φPQ:DD
38 fcoi1 PQ:DDPQID=PQ
39 37 38 syl φPQID=PQ
40 29 39 eqtrd φPQPP=PQ
41 26 40 eqtr2id φPQ=PQPP
42 41 ad2antrr φAdomQIPQPQ=PQPP
43 5 ad2antrr φAdomQIPQAdomPI
44 20 adantr φAdomQIAPdomQIP:D1-1 ontoD
45 33 adantr φAdomQIAPdomQIQ:D1-1 ontoD
46 6 1 pmtrfb PTDVP:D1-1 ontoDdomPI2𝑜
47 46 simp3bi PTdomPI2𝑜
48 3 47 syl φdomPI2𝑜
49 48 adantr φAdomQIAPdomQIdomPI2𝑜
50 2onn 2𝑜ω
51 nnfi 2𝑜ω2𝑜Fin
52 50 51 ax-mp 2𝑜Fin
53 6 1 pmtrfb QTDVQ:D1-1 ontoDdomQI2𝑜
54 53 simp3bi QTdomQI2𝑜
55 4 54 syl φdomQI2𝑜
56 enfi domQI2𝑜domQIFin2𝑜Fin
57 55 56 syl φdomQIFin2𝑜Fin
58 52 57 mpbiri φdomQIFin
59 58 adantr φAdomQIAPdomQIdomQIFin
60 5 adantr φAdomQIAPdomQIAdomPI
61 en2eleq AdomPIdomPI2𝑜domPI=AdomPIA
62 60 49 61 syl2anc φAdomQIAPdomQIdomPI=AdomPIA
63 simprl φAdomQIAPdomQIAdomQI
64 f1ofn P:D1-1 ontoDPFnD
65 20 64 syl φPFnD
66 65 adantr φAdomQIAPdomQIPFnD
67 fimass P:DDPdomQID
68 31 67 syl φPdomQID
69 68 adantr φAdomQIAPdomQIPdomQID
70 simprr φAdomQIAPdomQIAPdomQI
71 fnfvima PFnDPdomQIDAPdomQIPAPPdomQI
72 66 69 70 71 syl3anc φAdomQIAPdomQIPAPPdomQI
73 difss PIP
74 dmss PIPdomPIdomP
75 73 74 ax-mp domPIdomP
76 f1odm P:D1-1 ontoDdomP=D
77 20 76 syl φdomP=D
78 75 77 sseqtrid φdomPID
79 78 5 sseldd φAD
80 eqid domPI=domPI
81 6 1 80 pmtrffv PTADPA=ifAdomPIdomPIAA
82 3 79 81 syl2anc φPA=ifAdomPIdomPIAA
83 5 iftrued φifAdomPIdomPIAA=domPIA
84 82 83 eqtrd φPA=domPIA
85 84 adantr φAdomQIAPdomQIPA=domPIA
86 imaco PPdomQI=PPdomQI
87 28 imaeq1d φPPdomQI=IDdomQI
88 difss QIQ
89 dmss QIQdomQIdomQ
90 88 89 ax-mp domQIdomQ
91 f1odm Q:D1-1 ontoDdomQ=D
92 90 91 sseqtrid Q:D1-1 ontoDdomQID
93 33 92 syl φdomQID
94 resiima domQIDIDdomQI=domQI
95 93 94 syl φIDdomQI=domQI
96 87 95 eqtrd φPPdomQI=domQI
97 86 96 eqtr3id φPPdomQI=domQI
98 97 adantr φAdomQIAPdomQIPPdomQI=domQI
99 72 85 98 3eltr3d φAdomQIAPdomQIdomPIAdomQI
100 63 99 prssd φAdomQIAPdomQIAdomPIAdomQI
101 62 100 eqsstrd φAdomQIAPdomQIdomPIdomQI
102 55 ensymd φ2𝑜domQI
103 entr domPI2𝑜2𝑜domQIdomPIdomQI
104 48 102 103 syl2anc φdomPIdomQI
105 104 adantr φAdomQIAPdomQIdomPIdomQI
106 fisseneq domQIFindomPIdomQIdomPIdomQIdomPI=domQI
107 59 101 105 106 syl3anc φAdomQIAPdomQIdomPI=domQI
108 107 eqcomd φAdomQIAPdomQIdomQI=domPI
109 f1otrspeq P:D1-1 ontoDQ:D1-1 ontoDdomPI2𝑜domQI=domPIP=Q
110 44 45 49 108 109 syl22anc φAdomQIAPdomQIP=Q
111 110 expr φAdomQIAPdomQIP=Q
112 111 necon3ad φAdomQIPQ¬APdomQI
113 112 imp φAdomQIPQ¬APdomQI
114 18 difeq1d φPQPI=PQP-1I
115 114 dmeqd φdomPQPI=domPQP-1I
116 f1omvdconj Q:DDP:D1-1 ontoDdomPQP-1I=PdomQI
117 35 20 116 syl2anc φdomPQP-1I=PdomQI
118 115 117 eqtrd φdomPQPI=PdomQI
119 118 eleq2d φAdomPQPIAPdomQI
120 119 ad2antrr φAdomQIPQAdomPQPIAPdomQI
121 113 120 mtbird φAdomQIPQ¬AdomPQPI
122 coeq1 r=PQPrs=PQPs
123 122 eqeq2d r=PQPPQ=rsPQ=PQPs
124 difeq1 r=PQPrI=PQPI
125 124 dmeqd r=PQPdomrI=domPQPI
126 125 eleq2d r=PQPAdomrIAdomPQPI
127 126 notbid r=PQP¬AdomrI¬AdomPQPI
128 123 127 3anbi13d r=PQPPQ=rsAdomsI¬AdomrIPQ=PQPsAdomsI¬AdomPQPI
129 coeq2 s=PPQPs=PQPP
130 129 eqeq2d s=PPQ=PQPsPQ=PQPP
131 difeq1 s=PsI=PI
132 131 dmeqd s=PdomsI=domPI
133 132 eleq2d s=PAdomsIAdomPI
134 130 133 3anbi12d s=PPQ=PQPsAdomsI¬AdomPQPIPQ=PQPPAdomPI¬AdomPQPI
135 128 134 rspc2ev PQPTPTPQ=PQPPAdomPI¬AdomPQPIrTsTPQ=rsAdomsI¬AdomrI
136 24 25 42 43 121 135 syl113anc φAdomQIPQrTsTPQ=rsAdomsI¬AdomrI
137 136 olcd φAdomQIPQPQ=IDrTsTPQ=rsAdomsI¬AdomrI
138 14 137 pm2.61dane φAdomQIPQ=IDrTsTPQ=rsAdomsI¬AdomrI
139 4 adantr φ¬AdomQIQT
140 coass QPQ=QPQ
141 6 1 pmtrfcnv QTQ-1=Q
142 4 141 syl φQ-1=Q
143 142 eqcomd φQ=Q-1
144 143 coeq2d φQPQ=QPQ-1
145 140 144 eqtr3id φQPQ=QPQ-1
146 6 1 pmtrfconj PTQ:D1-1 ontoDQPQ-1T
147 3 33 146 syl2anc φQPQ-1T
148 145 147 eqeltrd φQPQT
149 148 adantr φ¬AdomQIQPQT
150 8 coeq1d φQQPQ=IDPQ
151 fcoi2 PQ:DDIDPQ=PQ
152 37 151 syl φIDPQ=PQ
153 150 152 eqtr2d φPQ=QQPQ
154 coass QQPQ=QQPQ
155 153 154 eqtrdi φPQ=QQPQ
156 155 adantr φ¬AdomQIPQ=QQPQ
157 f1ofn Q:D1-1 ontoDQFnD
158 33 157 syl φQFnD
159 fnelnfp QFnDADAdomQIQAA
160 158 79 159 syl2anc φAdomQIQAA
161 160 necon2bbid φQA=A¬AdomQI
162 161 biimpar φ¬AdomQIQA=A
163 fnfvima QFnDdomPIDAdomPIQAQdomPI
164 158 78 5 163 syl3anc φQAQdomPI
165 164 adantr φ¬AdomQIQAQdomPI
166 162 165 eqeltrrd φ¬AdomQIAQdomPI
167 145 difeq1d φQPQI=QPQ-1I
168 167 dmeqd φdomQPQI=domQPQ-1I
169 f1omvdconj P:DDQ:D1-1 ontoDdomQPQ-1I=QdomPI
170 31 33 169 syl2anc φdomQPQ-1I=QdomPI
171 168 170 eqtrd φdomQPQI=QdomPI
172 171 adantr φ¬AdomQIdomQPQI=QdomPI
173 166 172 eleqtrrd φ¬AdomQIAdomQPQI
174 simpr φ¬AdomQI¬AdomQI
175 coeq1 r=Qrs=Qs
176 175 eqeq2d r=QPQ=rsPQ=Qs
177 difeq1 r=QrI=QI
178 177 dmeqd r=QdomrI=domQI
179 178 eleq2d r=QAdomrIAdomQI
180 179 notbid r=Q¬AdomrI¬AdomQI
181 176 180 3anbi13d r=QPQ=rsAdomsI¬AdomrIPQ=QsAdomsI¬AdomQI
182 coeq2 s=QPQQs=QQPQ
183 182 eqeq2d s=QPQPQ=QsPQ=QQPQ
184 difeq1 s=QPQsI=QPQI
185 184 dmeqd s=QPQdomsI=domQPQI
186 185 eleq2d s=QPQAdomsIAdomQPQI
187 183 186 3anbi12d s=QPQPQ=QsAdomsI¬AdomQIPQ=QQPQAdomQPQI¬AdomQI
188 181 187 rspc2ev QTQPQTPQ=QQPQAdomQPQI¬AdomQIrTsTPQ=rsAdomsI¬AdomrI
189 139 149 156 173 174 188 syl113anc φ¬AdomQIrTsTPQ=rsAdomsI¬AdomrI
190 189 olcd φ¬AdomQIPQ=IDrTsTPQ=rsAdomsI¬AdomrI
191 138 190 pm2.61dan φPQ=IDrTsTPQ=rsAdomsI¬AdomrI