Metamath Proof Explorer


Theorem sticksstones11

Description: Establish bijective mapping between strictly monotone functions and functions that sum to a fixed non-negative integer. (Contributed by metakunt, 6-Oct-2024)

Ref Expression
Hypotheses sticksstones11.1 φN0
sticksstones11.2 φK=0
sticksstones11.3 F=aAj1Kj+l=1jal
sticksstones11.4 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
sticksstones11.5 A=g|g:1K+10i=1K+1gi=N
sticksstones11.6 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
Assertion sticksstones11 φF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 sticksstones11.1 φN0
2 sticksstones11.2 φK=0
3 sticksstones11.3 F=aAj1Kj+l=1jal
4 sticksstones11.4 G=bBifK=01Nk1K+1ifk=K+1N+K-bKifk=1b11bk-bk1-1
5 sticksstones11.5 A=g|g:1K+10i=1K+1gi=N
6 sticksstones11.6 B=f|f:1K1N+Kx1Ky1Kx<yfx<fy
7 0nn0 00
8 7 a1i φ00
9 2 8 eqeltrd φK0
10 1 9 3 5 6 sticksstones8 φF:AB
11 1 2 4 5 6 sticksstones9 φG:BA
12 5 a1i φA=g|g:1K+10i=1K+1gi=N
13 nfv uφ
14 nfcv _ug|g:1K+10i=1K+1gi=N
15 nfcv _u1N
16 ffn u:10uFn1
17 16 ad2antrl φu:10i1ui=NuFn1
18 1nn 1
19 18 a1i φu:10i1ui=N1
20 1 adantr φu:10i1ui=NN0
21 fnsng 1N01NFn1
22 19 20 21 syl2anc φu:10i1ui=N1NFn1
23 elsni p1p=1
24 23 adantl φu:10i1ui=Np1p=1
25 simpr φu:10i1ui=Np1p=1p=1
26 25 fveq2d φu:10i1ui=Np1p=1up=u1
27 simprl φu:10i1ui=Nu:10
28 1ex 1V
29 28 snid 11
30 29 a1i φu:10i1ui=N11
31 27 30 ffvelcdmd φu:10i1ui=Nu10
32 31 nn0cnd φu:10i1ui=Nu1
33 fveq2 i=1ui=u1
34 33 sumsn 1u1i1ui=u1
35 19 32 34 syl2anc φu:10i1ui=Ni1ui=u1
36 35 adantr φu:10i1ui=Ni1ui=u1i1ui=u1
37 36 eqcomd φu:10i1ui=Ni1ui=u1u1=i1ui
38 simplrr φu:10i1ui=Ni1ui=u1i1ui=N
39 37 38 eqtrd φu:10i1ui=Ni1ui=u1u1=N
40 39 ex φu:10i1ui=Ni1ui=u1u1=N
41 35 40 mpd φu:10i1ui=Nu1=N
42 41 adantr φu:10i1ui=Np1u1=N
43 18 a1i φu:10i1ui=Np11
44 20 adantr φu:10i1ui=Np1N0
45 fvsng 1N01N1=N
46 43 44 45 syl2anc φu:10i1ui=Np11N1=N
47 46 eqcomd φu:10i1ui=Np1N=1N1
48 42 47 eqtrd φu:10i1ui=Np1u1=1N1
49 48 adantr φu:10i1ui=Np1p=1u1=1N1
50 25 eqcomd φu:10i1ui=Np1p=11=p
51 50 fveq2d φu:10i1ui=Np1p=11N1=1Np
52 26 49 51 3eqtrd φu:10i1ui=Np1p=1up=1Np
53 24 52 mpdan φu:10i1ui=Np1up=1Np
54 17 22 53 eqfnfvd φu:10i1ui=Nu=1N
55 fsng 1N0u:1Nu=1N
56 19 20 55 syl2anc φu:10i1ui=Nu:1Nu=1N
57 54 56 mpbird φu:10i1ui=Nu:1N
58 ssidd φu:10i1ui=NNN
59 fss u:1NNNu:1N
60 57 58 59 syl2anc φu:10i1ui=Nu:1N
61 60 58 59 syl2anc φu:10i1ui=Nu:1N
62 61 56 mpbid φu:10i1ui=Nu=1N
63 vex uV
64 63 elsn u1Nu=1N
65 62 64 sylibr φu:10i1ui=Nu1N
66 65 ex φu:10i1ui=Nu1N
67 1zzd φ1
68 fzsn 111=1
69 67 68 syl φ11=1
70 69 eqcomd φ1=11
71 1e0p1 1=0+1
72 71 a1i φ1=0+1
73 72 oveq2d φ11=10+1
74 70 73 eqtrd φ1=10+1
75 2 eqcomd φ0=K
76 75 oveq1d φ0+1=K+1
77 76 oveq2d φ10+1=1K+1
78 74 77 eqtrd φ1=1K+1
79 78 feq2d φu:10u:1K+10
80 78 sumeq1d φi1ui=i=1K+1ui
81 80 eqeq1d φi1ui=Ni=1K+1ui=N
82 79 81 anbi12d φu:10i1ui=Nu:1K+10i=1K+1ui=N
83 82 imbi1d φu:10i1ui=Nu1Nu:1K+10i=1K+1ui=Nu1N
84 66 83 mpbid φu:1K+10i=1K+1ui=Nu1N
85 feq1 g=ug:1K+10u:1K+10
86 simpl g=ui1K+1g=u
87 86 fveq1d g=ui1K+1gi=ui
88 87 sumeq2dv g=ui=1K+1gi=i=1K+1ui
89 88 eqeq1d g=ui=1K+1gi=Ni=1K+1ui=N
90 85 89 anbi12d g=ug:1K+10i=1K+1gi=Nu:1K+10i=1K+1ui=N
91 63 90 elab ug|g:1K+10i=1K+1gi=Nu:1K+10i=1K+1ui=N
92 91 a1i φug|g:1K+10i=1K+1gi=Nu:1K+10i=1K+1ui=N
93 92 imbi1d φug|g:1K+10i=1K+1gi=Nu1Nu:1K+10i=1K+1ui=Nu1N
94 84 93 mpbird φug|g:1K+10i=1K+1gi=Nu1N
95 94 imp φug|g:1K+10i=1K+1gi=Nu1N
96 95 ex φug|g:1K+10i=1K+1gi=Nu1N
97 13 14 15 96 ssrd φg|g:1K+10i=1K+1gi=N1N
98 18 a1i φ1
99 98 1 55 syl2anc φu:1Nu=1N
100 99 bicomd φu=1Nu:1N
101 100 biimpd φu=1Nu:1N
102 elsni u1Nu=1N
103 101 102 impel φu1Nu:1N
104 1 snssd φN0
105 104 adantr φu1NN0
106 fss u:1NN0u:10
107 103 105 106 syl2anc φu1Nu:10
108 79 adantr φu1Nu:10u:1K+10
109 107 108 mpbid φu1Nu:1K+10
110 102 adantl φu1Nu=1N
111 78 3ad2ant1 φu1Nu=1N1=1K+1
112 111 eqcomd φu1Nu=1N1K+1=1
113 112 sumeq1d φu1Nu=1Ni=1K+1ui=i1ui
114 18 a1i φu1Nu=1N1
115 1 3ad2ant1 φu1Nu=1NN0
116 115 nn0cnd φu1Nu=1NN
117 114 115 45 syl2anc φu1Nu=1N1N1=N
118 117 eqcomd φu1Nu=1NN=1N1
119 110 3adant3 φu1Nu=1Nu=1N
120 119 fveq1d φu1Nu=1Nu1=1N1
121 118 120 eqtr4d φu1Nu=1NN=u1
122 121 eleq1d φu1Nu=1NNu1
123 116 122 mpbid φu1Nu=1Nu1
124 114 123 34 syl2anc φu1Nu=1Ni1ui=u1
125 120 117 eqtrd φu1Nu=1Nu1=N
126 124 125 eqtrd φu1Nu=1Ni1ui=N
127 113 126 eqtrd φu1Nu=1Ni=1K+1ui=N
128 127 3expa φu1Nu=1Ni=1K+1ui=N
129 110 128 mpdan φu1Ni=1K+1ui=N
130 109 129 jca φu1Nu:1K+10i=1K+1ui=N
131 130 91 sylibr φu1Nug|g:1K+10i=1K+1gi=N
132 131 ex φu1Nug|g:1K+10i=1K+1gi=N
133 13 15 14 132 ssrd φ1Ng|g:1K+10i=1K+1gi=N
134 97 133 eqssd φg|g:1K+10i=1K+1gi=N=1N
135 12 134 eqtrd φA=1N
136 eqss A=1NA1N1NA
137 136 biimpi A=1NA1N1NA
138 137 simpld A=1NA1N
139 135 138 syl φA1N
140 fss G:BAA1NG:B1N
141 11 139 140 syl2anc φG:B1N
142 141 adantr φcAG:B1N
143 10 ffvelcdmda φcAFcB
144 fvconst G:B1NFcBGFc=1N
145 142 143 144 syl2anc φcAGFc=1N
146 135 eleq2d φcAc1N
147 146 biimpd φcAc1N
148 147 imp φcAc1N
149 vex cV
150 149 elsn c1Nc=1N
151 148 150 sylib φcAc=1N
152 151 eqcomd φcA1N=c
153 145 152 eqtrd φcAGFc=c
154 153 ralrimiva φcAGFc=c
155 simpr φdBdB
156 nfv dφ
157 nfcv _dB
158 nfcv _d
159 6 a1i φdBB=f|f:1K1N+Kx1Ky1Kx<yfx<fy
160 159 eleq2d φdBdBdf|f:1K1N+Kx1Ky1Kx<yfx<fy
161 160 biimpd φdBdBdf|f:1K1N+Kx1Ky1Kx<yfx<fy
162 161 syldbl2 φdBdf|f:1K1N+Kx1Ky1Kx<yfx<fy
163 vex dV
164 feq1 f=df:1K1N+Kd:1K1N+K
165 fveq1 f=dfx=dx
166 fveq1 f=dfy=dy
167 165 166 breq12d f=dfx<fydx<dy
168 167 imbi2d f=dx<yfx<fyx<ydx<dy
169 168 2ralbidv f=dx1Ky1Kx<yfx<fyx1Ky1Kx<ydx<dy
170 164 169 anbi12d f=df:1K1N+Kx1Ky1Kx<yfx<fyd:1K1N+Kx1Ky1Kx<ydx<dy
171 163 170 elab df|f:1K1N+Kx1Ky1Kx<yfx<fyd:1K1N+Kx1Ky1Kx<ydx<dy
172 162 171 sylib φdBd:1K1N+Kx1Ky1Kx<ydx<dy
173 172 simpld φdBd:1K1N+K
174 0lt1 0<1
175 174 a1i φ0<1
176 2 175 eqbrtrd φK<1
177 9 nn0zd φK
178 fzn 1KK<11K=
179 67 177 178 syl2anc φK<11K=
180 176 179 mpbid φ1K=
181 180 feq2d φd:1K1N+Kd:1N+K
182 181 adantr φdBd:1K1N+Kd:1N+K
183 173 182 mpbid φdBd:1N+K
184 f0bi d:1N+Kd=
185 183 184 sylib φdBd=
186 velsn dd=
187 185 186 sylibr φdBd
188 187 ex φdBd
189 f0 :1N+K
190 189 a1i φ:1N+K
191 180 feq2d φ:1K1N+K:1N+K
192 190 191 mpbird φ:1K1N+K
193 ral0 xy1Kx<yx<y
194 193 a1i φxy1Kx<yx<y
195 biidd φx1Ky1Kx<yx<yy1Kx<yx<y
196 180 195 raleqbidva φx1Ky1Kx<yx<yxy1Kx<yx<y
197 194 196 mpbird φx1Ky1Kx<yx<y
198 192 197 jca φ:1K1N+Kx1Ky1Kx<yx<y
199 0ex V
200 feq1 f=f:1K1N+K:1K1N+K
201 fveq1 f=fx=x
202 fveq1 f=fy=y
203 201 202 breq12d f=fx<fyx<y
204 203 imbi2d f=x<yfx<fyx<yx<y
205 204 2ralbidv f=x1Ky1Kx<yfx<fyx1Ky1Kx<yx<y
206 200 205 anbi12d f=f:1K1N+Kx1Ky1Kx<yfx<fy:1K1N+Kx1Ky1Kx<yx<y
207 206 elabg Vf|f:1K1N+Kx1Ky1Kx<yfx<fy:1K1N+Kx1Ky1Kx<yx<y
208 199 207 ax-mp f|f:1K1N+Kx1Ky1Kx<yfx<fy:1K1N+Kx1Ky1Kx<yx<y
209 198 208 sylibr φf|f:1K1N+Kx1Ky1Kx<yfx<fy
210 6 a1i φB=f|f:1K1N+Kx1Ky1Kx<yfx<fy
211 209 210 eleqtrrd φB
212 211 adantr φdB
213 elsni dd=
214 213 adantl φdd=
215 214 eleq1d φddBB
216 212 215 mpbird φddB
217 216 ex φddB
218 188 217 impbid φdBd
219 156 157 158 218 eqrd φB=
220 219 adantr φdBB=
221 155 220 eleqtrd φdBd
222 163 elsn dd=
223 221 222 sylib φdBd=
224 223 fveq2d φdBGd=G
225 224 fveq2d φdBFGd=FG
226 180 adantr φaA1K=
227 226 mpteq1d φaAj1Kj+l=1jal=jj+l=1jal
228 mpt0 jj+l=1jal=
229 228 a1i φaAjj+l=1jal=
230 227 229 eqtrd φaAj1Kj+l=1jal=
231 fzfid φ1KFin
232 231 mptexd φj1Kj+l=1jalV
233 elsng j1Kj+l=1jalVj1Kj+l=1jalj1Kj+l=1jal=
234 232 233 syl φj1Kj+l=1jalj1Kj+l=1jal=
235 234 adantr φaAj1Kj+l=1jalj1Kj+l=1jal=
236 230 235 mpbird φaAj1Kj+l=1jal
237 236 3 fmptd φF:A
238 237 adantr φdBF:A
239 ffvelcdm G:BABGA
240 11 211 239 syl2anc φGA
241 240 adantr φdBGA
242 fvconst F:AGAFG=
243 238 241 242 syl2anc φdBFG=
244 225 243 eqtrd φdBFGd=
245 223 eqcomd φdB=d
246 244 245 eqtrd φdBFGd=d
247 246 ralrimiva φdBFGd=d
248 10 11 154 247 2fvidf1od φF:A1-1 ontoB