Metamath Proof Explorer


Theorem tayl0

Description: The Taylor series is always defined at the basepoint, with value equal to the value of the function. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φS
taylfval.f φF:A
taylfval.a φAS
taylfval.n φN0N=+∞
taylfval.b φk0NBdomSDnFk
taylfval.t T=NSTaylFB
Assertion tayl0 φBdomTTB=FB

Proof

Step Hyp Ref Expression
1 taylfval.s φS
2 taylfval.f φF:A
3 taylfval.a φAS
4 taylfval.n φN0N=+∞
5 taylfval.b φk0NBdomSDnFk
6 taylfval.t T=NSTaylFB
7 recnprss SS
8 1 7 syl φS
9 3 8 sstrd φA
10 fveq2 k=0SDnFk=SDnF0
11 10 dmeqd k=0domSDnFk=domSDnF0
12 11 eleq2d k=0BdomSDnFkBdomSDnF0
13 5 ralrimiva φk0NBdomSDnFk
14 elxnn0 N0*N0N=+∞
15 0xr 0*
16 15 a1i N0*0*
17 xnn0xr N0*N*
18 xnn0ge0 N0*0N
19 lbicc2 0*N*0N00N
20 16 17 18 19 syl3anc N0*00N
21 14 20 sylbir N0N=+∞00N
22 4 21 syl φ00N
23 0zd φ0
24 22 23 elind φ00N
25 12 13 24 rspcdva φBdomSDnF0
26 cnex V
27 26 a1i φV
28 elpm2r VSF:AASF𝑝𝑚S
29 27 1 2 3 28 syl22anc φF𝑝𝑚S
30 dvn0 SF𝑝𝑚SSDnF0=F
31 8 29 30 syl2anc φSDnF0=F
32 31 dmeqd φdomSDnF0=domF
33 2 fdmd φdomF=A
34 32 33 eqtrd φdomSDnF0=A
35 25 34 eleqtrd φBA
36 9 35 sseldd φB
37 cnfldbas =Basefld
38 cnfld0 0=0fld
39 cnring fldRing
40 ringmnd fldRingfldMnd
41 39 40 mp1i φfldMnd
42 ovex 0NV
43 42 inex1 0NV
44 43 a1i φ0NV
45 1 adantr φk0NS
46 29 adantr φk0NF𝑝𝑚S
47 simpr φk0Nk0N
48 47 elin2d φk0Nk
49 47 elin1d φk0Nk0N
50 nn0re N0N
51 50 rexrd N0N*
52 id N=+∞N=+∞
53 pnfxr +∞*
54 52 53 eqeltrdi N=+∞N*
55 51 54 jaoi N0N=+∞N*
56 4 55 syl φN*
57 56 adantr φk0NN*
58 elicc1 0*N*k0Nk*0kkN
59 15 57 58 sylancr φk0Nk0Nk*0kkN
60 49 59 mpbid φk0Nk*0kkN
61 60 simp2d φk0N0k
62 elnn0z k0k0k
63 48 61 62 sylanbrc φk0Nk0
64 dvnf SF𝑝𝑚Sk0SDnFk:domSDnFk
65 45 46 63 64 syl3anc φk0NSDnFk:domSDnFk
66 65 5 ffvelcdmd φk0NSDnFkB
67 63 faccld φk0Nk!
68 67 nncnd φk0Nk!
69 67 nnne0d φk0Nk!0
70 66 68 69 divcld φk0NSDnFkBk!
71 0cnd φk0N0
72 71 63 expcld φk0N0k
73 70 72 mulcld φk0NSDnFkBk!0k
74 73 fmpttd φk0NSDnFkBk!0k:0N
75 eldifi k0N0k0N
76 75 63 sylan2 φk0N0k0
77 eldifsni k0N0k0
78 77 adantl φk0N0k0
79 elnnne0 kk0k0
80 76 78 79 sylanbrc φk0N0k
81 80 0expd φk0N00k=0
82 81 oveq2d φk0N0SDnFkBk!0k=SDnFkBk!0
83 70 mul01d φk0NSDnFkBk!0=0
84 75 83 sylan2 φk0N0SDnFkBk!0=0
85 82 84 eqtrd φk0N0SDnFkBk!0k=0
86 zex V
87 86 inex2 0NV
88 87 a1i φ0NV
89 85 88 suppss2 φk0NSDnFkBk!0ksupp00
90 37 38 41 44 24 74 89 gsumpt φfldk0NSDnFkBk!0k=k0NSDnFkBk!0k0
91 10 fveq1d k=0SDnFkB=SDnF0B
92 fveq2 k=0k!=0!
93 fac0 0!=1
94 92 93 eqtrdi k=0k!=1
95 91 94 oveq12d k=0SDnFkBk!=SDnF0B1
96 oveq2 k=00k=00
97 0exp0e1 00=1
98 96 97 eqtrdi k=00k=1
99 95 98 oveq12d k=0SDnFkBk!0k=SDnF0B11
100 eqid k0NSDnFkBk!0k=k0NSDnFkBk!0k
101 ovex SDnF0B11V
102 99 100 101 fvmpt 00Nk0NSDnFkBk!0k0=SDnF0B11
103 24 102 syl φk0NSDnFkBk!0k0=SDnF0B11
104 31 fveq1d φSDnF0B=FB
105 104 oveq1d φSDnF0B1=FB1
106 2 35 ffvelcdmd φFB
107 106 div1d φFB1=FB
108 105 107 eqtrd φSDnF0B1=FB
109 108 oveq1d φSDnF0B11=FB1
110 106 mulridd φFB1=FB
111 109 110 eqtrd φSDnF0B11=FB
112 90 103 111 3eqtrd φfldk0NSDnFkBk!0k=FB
113 ringcmn fldRingfldCMnd
114 39 113 mp1i φfldCMnd
115 cnfldtps fldTopSp
116 115 a1i φfldTopSp
117 mptexg 0NVk0NSDnFkBk!0kV
118 87 117 mp1i φk0NSDnFkBk!0kV
119 funmpt Funk0NSDnFkBk!0k
120 119 a1i φFunk0NSDnFkBk!0k
121 c0ex 0V
122 121 a1i φ0V
123 snfi 0Fin
124 123 a1i φ0Fin
125 suppssfifsupp k0NSDnFkBk!0kVFunk0NSDnFkBk!0k0V0Fink0NSDnFkBk!0ksupp00finSupp0k0NSDnFkBk!0k
126 118 120 122 124 89 125 syl32anc φfinSupp0k0NSDnFkBk!0k
127 37 38 114 116 44 74 126 tsmsid φfldk0NSDnFkBk!0kfldtsumsk0NSDnFkBk!0k
128 112 127 eqeltrrd φFBfldtsumsk0NSDnFkBk!0k
129 36 subidd φBB=0
130 129 oveq1d φBBk=0k
131 130 oveq2d φSDnFkBk!BBk=SDnFkBk!0k
132 131 mpteq2dv φk0NSDnFkBk!BBk=k0NSDnFkBk!0k
133 132 oveq2d φfldtsumsk0NSDnFkBk!BBk=fldtsumsk0NSDnFkBk!0k
134 128 133 eleqtrrd φFBfldtsumsk0NSDnFkBk!BBk
135 1 2 3 4 5 6 eltayl φBTFBBFBfldtsumsk0NSDnFkBk!BBk
136 36 134 135 mpbir2and φBTFB
137 1 2 3 4 5 6 taylf φT:domT
138 ffun T:domTFunT
139 funbrfv2b FunTBTFBBdomTTB=FB
140 137 138 139 3syl φBTFBBdomTTB=FB
141 136 140 mpbid φBdomTTB=FB