Metamath Proof Explorer


Theorem txcnp

Description: If two functions are continuous at D , then the ordered pair of them is continuous at D into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses txcnp.4 φJTopOnX
txcnp.5 φKTopOnY
txcnp.6 φLTopOnZ
txcnp.7 φDX
txcnp.8 φxXAJCnPKD
txcnp.9 φxXBJCnPLD
Assertion txcnp φxXABJCnPK×tLD

Proof

Step Hyp Ref Expression
1 txcnp.4 φJTopOnX
2 txcnp.5 φKTopOnY
3 txcnp.6 φLTopOnZ
4 txcnp.7 φDX
5 txcnp.8 φxXAJCnPKD
6 txcnp.9 φxXBJCnPLD
7 cnpf2 JTopOnXKTopOnYxXAJCnPKDxXA:XY
8 1 2 5 7 syl3anc φxXA:XY
9 8 fvmptelcdm φxXAY
10 cnpf2 JTopOnXLTopOnZxXBJCnPLDxXB:XZ
11 1 3 6 10 syl3anc φxXB:XZ
12 11 fvmptelcdm φxXBZ
13 9 12 opelxpd φxXABY×Z
14 13 fmpttd φxXAB:XY×Z
15 simpr φxXxX
16 opex ABV
17 eqid xXAB=xXAB
18 17 fvmpt2 xXABVxXABx=AB
19 15 16 18 sylancl φxXxXABx=AB
20 eqid xXA=xXA
21 20 fvmpt2 xXAYxXAx=A
22 15 9 21 syl2anc φxXxXAx=A
23 eqid xXB=xXB
24 23 fvmpt2 xXBZxXBx=B
25 15 12 24 syl2anc φxXxXBx=B
26 22 25 opeq12d φxXxXAxxXBx=AB
27 19 26 eqtr4d φxXxXABx=xXAxxXBx
28 27 ralrimiva φxXxXABx=xXAxxXBx
29 nffvmpt1 _xxXABD
30 nffvmpt1 _xxXAD
31 nffvmpt1 _xxXBD
32 30 31 nfop _xxXADxXBD
33 29 32 nfeq xxXABD=xXADxXBD
34 fveq2 x=DxXABx=xXABD
35 fveq2 x=DxXAx=xXAD
36 fveq2 x=DxXBx=xXBD
37 35 36 opeq12d x=DxXAxxXBx=xXADxXBD
38 34 37 eqeq12d x=DxXABx=xXAxxXBxxXABD=xXADxXBD
39 33 38 rspc DXxXxXABx=xXAxxXBxxXABD=xXADxXBD
40 4 28 39 sylc φxXABD=xXADxXBD
41 40 eleq1d φxXABDv×wxXADxXBDv×w
42 41 adantr φvKwLxXABDv×wxXADxXBDv×w
43 5 ad2antrr φvKwLxXADvxXBDwxXAJCnPKD
44 simplrl φvKwLxXADvxXBDwvK
45 simprl φvKwLxXADvxXBDwxXADv
46 cnpimaex xXAJCnPKDvKxXADvrJDrxXArv
47 43 44 45 46 syl3anc φvKwLxXADvxXBDwrJDrxXArv
48 6 ad2antrr φvKwLxXADvxXBDwxXBJCnPLD
49 simplrr φvKwLxXADvxXBDwwL
50 simprr φvKwLxXADvxXBDwxXBDw
51 cnpimaex xXBJCnPLDwLxXBDwsJDsxXBsw
52 48 49 50 51 syl3anc φvKwLxXADvxXBDwsJDsxXBsw
53 47 52 jca φvKwLxXADvxXBDwrJDrxXArvsJDsxXBsw
54 53 ex φvKwLxXADvxXBDwrJDrxXArvsJDsxXBsw
55 opelxp xXADxXBDv×wxXADvxXBDw
56 reeanv rJsJDrxXArvDsxXBswrJDrxXArvsJDsxXBsw
57 54 55 56 3imtr4g φvKwLxXADxXBDv×wrJsJDrxXArvDsxXBsw
58 42 57 sylbid φvKwLxXABDv×wrJsJDrxXArvDsxXBsw
59 an4 DrxXArvDsxXBswDrDsxXArvxXBsw
60 elin DrsDrDs
61 60 biimpri DrDsDrs
62 61 a1i φvKwLrJsJDrDsDrs
63 simpl rJsJrJ
64 toponss JTopOnXrJrX
65 1 63 64 syl2an φrJsJrX
66 ssinss1 rXrsX
67 66 adantl φrXrsX
68 67 sselda φrXtrstX
69 28 ad2antrr φrXtrsxXxXABx=xXAxxXBx
70 nffvmpt1 _xxXABt
71 nffvmpt1 _xxXAt
72 nffvmpt1 _xxXBt
73 71 72 nfop _xxXAtxXBt
74 70 73 nfeq xxXABt=xXAtxXBt
75 fveq2 x=txXABx=xXABt
76 fveq2 x=txXAx=xXAt
77 fveq2 x=txXBx=xXBt
78 76 77 opeq12d x=txXAxxXBx=xXAtxXBt
79 75 78 eqeq12d x=txXABx=xXAxxXBxxXABt=xXAtxXBt
80 74 79 rspc tXxXxXABx=xXAxxXBxxXABt=xXAtxXBt
81 68 69 80 sylc φrXtrsxXABt=xXAtxXBt
82 simpr φrXtrstrs
83 82 elin1d φrXtrstr
84 8 ad2antrr φrXtrsxXA:XY
85 84 ffund φrXtrsFunxXA
86 67 adantr φrXtrsrsX
87 84 fdmd φrXtrsdomxXA=X
88 86 87 sseqtrrd φrXtrsrsdomxXA
89 88 82 sseldd φrXtrstdomxXA
90 funfvima FunxXAtdomxXAtrxXAtxXAr
91 85 89 90 syl2anc φrXtrstrxXAtxXAr
92 83 91 mpd φrXtrsxXAtxXAr
93 82 elin2d φrXtrsts
94 11 ad2antrr φrXtrsxXB:XZ
95 94 ffund φrXtrsFunxXB
96 94 fdmd φrXtrsdomxXB=X
97 86 96 sseqtrrd φrXtrsrsdomxXB
98 97 82 sseldd φrXtrstdomxXB
99 funfvima FunxXBtdomxXBtsxXBtxXBs
100 95 98 99 syl2anc φrXtrstsxXBtxXBs
101 93 100 mpd φrXtrsxXBtxXBs
102 92 101 opelxpd φrXtrsxXAtxXBtxXAr×xXBs
103 81 102 eqeltrd φrXtrsxXABtxXAr×xXBs
104 103 ralrimiva φrXtrsxXABtxXAr×xXBs
105 14 ffund φFunxXAB
106 105 adantr φrXFunxXAB
107 14 fdmd φdomxXAB=X
108 107 adantr φrXdomxXAB=X
109 67 108 sseqtrrd φrXrsdomxXAB
110 funimass4 FunxXABrsdomxXABxXABrsxXAr×xXBstrsxXABtxXAr×xXBs
111 106 109 110 syl2anc φrXxXABrsxXAr×xXBstrsxXABtxXAr×xXBs
112 104 111 mpbird φrXxXABrsxXAr×xXBs
113 65 112 syldan φrJsJxXABrsxXAr×xXBs
114 113 adantlr φvKwLrJsJxXABrsxXAr×xXBs
115 xpss12 xXArvxXBswxXAr×xXBsv×w
116 sstr2 xXABrsxXAr×xXBsxXAr×xXBsv×wxXABrsv×w
117 114 115 116 syl2im φvKwLrJsJxXArvxXBswxXABrsv×w
118 62 117 anim12d φvKwLrJsJDrDsxXArvxXBswDrsxXABrsv×w
119 59 118 biimtrid φvKwLrJsJDrxXArvDsxXBswDrsxXABrsv×w
120 topontop JTopOnXJTop
121 1 120 syl φJTop
122 inopn JToprJsJrsJ
123 122 3expb JToprJsJrsJ
124 121 123 sylan φrJsJrsJ
125 124 adantlr φvKwLrJsJrsJ
126 119 125 jctild φvKwLrJsJDrxXArvDsxXBswrsJDrsxXABrsv×w
127 126 expimpd φvKwLrJsJDrxXArvDsxXBswrsJDrsxXABrsv×w
128 eleq2 z=rsDzDrs
129 imaeq2 z=rsxXABz=xXABrs
130 129 sseq1d z=rsxXABzv×wxXABrsv×w
131 128 130 anbi12d z=rsDzxXABzv×wDrsxXABrsv×w
132 131 rspcev rsJDrsxXABrsv×wzJDzxXABzv×w
133 127 132 syl6 φvKwLrJsJDrxXArvDsxXBswzJDzxXABzv×w
134 133 expd φvKwLrJsJDrxXArvDsxXBswzJDzxXABzv×w
135 134 rexlimdvv φvKwLrJsJDrxXArvDsxXBswzJDzxXABzv×w
136 58 135 syld φvKwLxXABDv×wzJDzxXABzv×w
137 136 ralrimivva φvKwLxXABDv×wzJDzxXABzv×w
138 vex vV
139 vex wV
140 138 139 xpex v×wV
141 140 rgen2w vKwLv×wV
142 eqid vK,wLv×w=vK,wLv×w
143 eleq2 y=v×wxXABDyxXABDv×w
144 sseq2 y=v×wxXABzyxXABzv×w
145 144 anbi2d y=v×wDzxXABzyDzxXABzv×w
146 145 rexbidv y=v×wzJDzxXABzyzJDzxXABzv×w
147 143 146 imbi12d y=v×wxXABDyzJDzxXABzyxXABDv×wzJDzxXABzv×w
148 142 147 ralrnmpo vKwLv×wVyranvK,wLv×wxXABDyzJDzxXABzyvKwLxXABDv×wzJDzxXABzv×w
149 141 148 ax-mp yranvK,wLv×wxXABDyzJDzxXABzyvKwLxXABDv×wzJDzxXABzv×w
150 137 149 sylibr φyranvK,wLv×wxXABDyzJDzxXABzy
151 topontop KTopOnYKTop
152 2 151 syl φKTop
153 topontop LTopOnZLTop
154 3 153 syl φLTop
155 eqid ranvK,wLv×w=ranvK,wLv×w
156 155 txval KTopLTopK×tL=topGenranvK,wLv×w
157 152 154 156 syl2anc φK×tL=topGenranvK,wLv×w
158 txtopon KTopOnYLTopOnZK×tLTopOnY×Z
159 2 3 158 syl2anc φK×tLTopOnY×Z
160 1 157 159 4 tgcnp φxXABJCnPK×tLDxXAB:XY×ZyranvK,wLv×wxXABDyzJDzxXABzy
161 14 150 160 mpbir2and φxXABJCnPK×tLD