Metamath Proof Explorer


Theorem ulmdvlem1

Description: Lemma for ulmdv . (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses ulmdv.z Z=M
ulmdv.s φS
ulmdv.m φM
ulmdv.f φF:ZX
ulmdv.g φG:X
ulmdv.l φzXkZFkzGz
ulmdv.u φkZSDFkuXH
ulmdvlem1.c φψCX
ulmdvlem1.r φψR+
ulmdvlem1.u φψU+
ulmdvlem1.v φψW+
ulmdvlem1.l φψU<W
ulmdvlem1.b φψCballabsS×SUX
ulmdvlem1.a φψYC<U
ulmdvlem1.n φψNZ
ulmdvlem1.1 φψmNxXFNSxFmSx<R22
ulmdvlem1.2 φψFNSCHC<R2
ulmdvlem1.y φψYX
ulmdvlem1.3 φψYC
ulmdvlem1.4 φψYC<WFNYFNCYCFNSC<R22
Assertion ulmdvlem1 φψGYGCYCHC<R

Proof

Step Hyp Ref Expression
1 ulmdv.z Z=M
2 ulmdv.s φS
3 ulmdv.m φM
4 ulmdv.f φF:ZX
5 ulmdv.g φG:X
6 ulmdv.l φzXkZFkzGz
7 ulmdv.u φkZSDFkuXH
8 ulmdvlem1.c φψCX
9 ulmdvlem1.r φψR+
10 ulmdvlem1.u φψU+
11 ulmdvlem1.v φψW+
12 ulmdvlem1.l φψU<W
13 ulmdvlem1.b φψCballabsS×SUX
14 ulmdvlem1.a φψYC<U
15 ulmdvlem1.n φψNZ
16 ulmdvlem1.1 φψmNxXFNSxFmSx<R22
17 ulmdvlem1.2 φψFNSCHC<R2
18 ulmdvlem1.y φψYX
19 ulmdvlem1.3 φψYC
20 ulmdvlem1.4 φψYC<WFNYFNCYCFNSC<R22
21 5 adantr φψG:X
22 21 18 ffvelcdmd φψGY
23 21 8 ffvelcdmd φψGC
24 22 23 subcld φψGYGC
25 fveq2 k=NFk=FN
26 25 oveq2d k=NSDFk=SDFN
27 eqid kZSDFk=kZSDFk
28 ovex SDFNV
29 26 27 28 fvmpt NZkZSDFkN=SDFN
30 15 29 syl φψkZSDFkN=SDFN
31 ovex SDFkV
32 31 rgenw kZSDFkV
33 27 fnmpt kZSDFkVkZSDFkFnZ
34 32 33 mp1i φkZSDFkFnZ
35 ulmf2 kZSDFkFnZkZSDFkuXHkZSDFk:ZX
36 34 7 35 syl2anc φkZSDFk:ZX
37 36 adantr φψkZSDFk:ZX
38 37 15 ffvelcdmd φψkZSDFkNX
39 30 38 eqeltrrd φψSDFNX
40 elmapi SDFNXFNS:X
41 39 40 syl φψFNS:X
42 41 fdmd φψdomFNS=X
43 dvbsss domFNSS
44 42 43 eqsstrrdi φψXS
45 recnprss SS
46 2 45 syl φS
47 46 adantr φψS
48 44 47 sstrd φψX
49 48 18 sseldd φψY
50 48 8 sseldd φψC
51 49 50 subcld φψYC
52 49 50 19 subne0d φψYC0
53 24 51 52 divcld φψGYGCYC
54 ulmcl kZSDFkuXHH:X
55 7 54 syl φH:X
56 55 adantr φψH:X
57 56 8 ffvelcdmd φψHC
58 41 8 ffvelcdmd φψFNSC
59 9 rpred φψR
60 53 58 subcld φψGYGCYCFNSC
61 60 abscld φψGYGCYCFNSC
62 4 adantr φψF:ZX
63 62 15 ffvelcdmd φψFNX
64 elmapi FNXFN:X
65 63 64 syl φψFN:X
66 65 18 ffvelcdmd φψFNY
67 65 8 ffvelcdmd φψFNC
68 66 67 subcld φψFNYFNC
69 68 51 52 divcld φψFNYFNCYC
70 53 69 subcld φψGYGCYCFNYFNCYC
71 70 abscld φψGYGCYCFNYFNCYC
72 69 58 subcld φψFNYFNCYCFNSC
73 72 abscld φψFNYFNCYCFNSC
74 71 73 readdcld φψGYGCYCFNYFNCYC+FNYFNCYCFNSC
75 59 rehalfcld φψR2
76 53 58 69 abs3difd φψGYGCYCFNSCGYGCYCFNYFNCYC+FNYFNCYCFNSC
77 75 rehalfcld φψR22
78 22 66 23 67 sub4d φψGY-FNY-GCFNC=GY-GC-FNYFNC
79 78 oveq1d φψGY-FNY-GCFNCYC=GY-GC-FNYFNCYC
80 24 68 51 52 divsubdird φψGY-GC-FNYFNCYC=GYGCYCFNYFNCYC
81 79 80 eqtrd φψGY-FNY-GCFNCYC=GYGCYCFNYFNCYC
82 81 fveq2d φψGY-FNY-GCFNCYC=GYGCYCFNYFNCYC
83 22 66 subcld φψGYFNY
84 23 67 subcld φψGCFNC
85 83 84 subcld φψGY-FNY-GCFNC
86 85 51 52 absdivd φψGY-FNY-GCFNCYC=GY-FNY-GCFNCYC
87 82 86 eqtr3d φψGYGCYCFNYFNCYC=GY-FNY-GCFNCYC
88 eqid N=N
89 15 1 eleqtrdi φψNM
90 eluzelz NMN
91 89 90 syl φψN
92 3 adantr φψM
93 fveq2 z=YFkz=FkY
94 93 mpteq2dv z=YkZFkz=kZFkY
95 fveq2 z=YGz=GY
96 94 95 breq12d z=YkZFkzGzkZFkYGY
97 6 ralrimiva φzXkZFkzGz
98 97 adantr φψzXkZFkzGz
99 96 98 18 rspcdva φψkZFkYGY
100 1 fvexi ZV
101 100 mptex kZFkYFNYV
102 101 a1i φψkZFkYFNYV
103 fveq2 k=nFk=Fn
104 103 fveq1d k=nFkY=FnY
105 eqid kZFkY=kZFkY
106 fvex FnYV
107 104 105 106 fvmpt nZkZFkYn=FnY
108 107 adantl φψnZkZFkYn=FnY
109 62 ffvelcdmda φψnZFnX
110 elmapi FnXFn:X
111 109 110 syl φψnZFn:X
112 18 adantr φψnZYX
113 111 112 ffvelcdmd φψnZFnY
114 108 113 eqeltrd φψnZkZFkYn
115 104 oveq1d k=nFkYFNY=FnYFNY
116 eqid kZFkYFNY=kZFkYFNY
117 ovex FnYFNYV
118 115 116 117 fvmpt nZkZFkYFNYn=FnYFNY
119 118 adantl φψnZkZFkYFNYn=FnYFNY
120 108 oveq1d φψnZkZFkYnFNY=FnYFNY
121 119 120 eqtr4d φψnZkZFkYFNYn=kZFkYnFNY
122 1 92 99 66 102 114 121 climsubc1 φψkZFkYFNYGYFNY
123 100 mptex kZFkY-FNY-FkCFNCV
124 123 a1i φψkZFkY-FNY-FkCFNCV
125 fveq2 z=CFkz=FkC
126 125 mpteq2dv z=CkZFkz=kZFkC
127 fveq2 z=CGz=GC
128 126 127 breq12d z=CkZFkzGzkZFkCGC
129 128 98 8 rspcdva φψkZFkCGC
130 100 mptex kZFkCFNCV
131 130 a1i φψkZFkCFNCV
132 103 fveq1d k=nFkC=FnC
133 eqid kZFkC=kZFkC
134 fvex FnCV
135 132 133 134 fvmpt nZkZFkCn=FnC
136 135 adantl φψnZkZFkCn=FnC
137 8 adantr φψnZCX
138 111 137 ffvelcdmd φψnZFnC
139 136 138 eqeltrd φψnZkZFkCn
140 132 oveq1d k=nFkCFNC=FnCFNC
141 eqid kZFkCFNC=kZFkCFNC
142 ovex FnCFNCV
143 140 141 142 fvmpt nZkZFkCFNCn=FnCFNC
144 143 adantl φψnZkZFkCFNCn=FnCFNC
145 136 oveq1d φψnZkZFkCnFNC=FnCFNC
146 144 145 eqtr4d φψnZkZFkCFNCn=kZFkCnFNC
147 1 92 129 67 131 139 146 climsubc1 φψkZFkCFNCGCFNC
148 66 adantr φψnZFNY
149 113 148 subcld φψnZFnYFNY
150 119 149 eqeltrd φψnZkZFkYFNYn
151 67 adantr φψnZFNC
152 138 151 subcld φψnZFnCFNC
153 144 152 eqeltrd φψnZkZFkCFNCn
154 115 140 oveq12d k=nFkY-FNY-FkCFNC=FnY-FNY-FnCFNC
155 eqid kZFkY-FNY-FkCFNC=kZFkY-FNY-FkCFNC
156 ovex FnY-FNY-FnCFNCV
157 154 155 156 fvmpt nZkZFkY-FNY-FkCFNCn=FnY-FNY-FnCFNC
158 157 adantl φψnZkZFkY-FNY-FkCFNCn=FnY-FNY-FnCFNC
159 119 144 oveq12d φψnZkZFkYFNYnkZFkCFNCn=FnY-FNY-FnCFNC
160 158 159 eqtr4d φψnZkZFkY-FNY-FkCFNCn=kZFkYFNYnkZFkCFNCn
161 1 92 122 124 147 150 153 160 climsub φψkZFkY-FNY-FkCFNCGY-FNY-GCFNC
162 100 mptex kZFkY-FNY-FkCFNCV
163 162 a1i φψkZFkY-FNY-FkCFNCV
164 149 152 subcld φψnZFnY-FNY-FnCFNC
165 158 164 eqeltrd φψnZkZFkY-FNY-FkCFNCn
166 154 fveq2d k=nFkY-FNY-FkCFNC=FnY-FNY-FnCFNC
167 eqid kZFkY-FNY-FkCFNC=kZFkY-FNY-FkCFNC
168 fvex FnY-FNY-FnCFNCV
169 166 167 168 fvmpt nZkZFkY-FNY-FkCFNCn=FnY-FNY-FnCFNC
170 169 adantl φψnZkZFkY-FNY-FkCFNCn=FnY-FNY-FnCFNC
171 158 fveq2d φψnZkZFkY-FNY-FkCFNCn=FnY-FNY-FnCFNC
172 170 171 eqtr4d φψnZkZFkY-FNY-FkCFNCn=kZFkY-FNY-FkCFNCn
173 1 161 163 92 165 172 climabs φψkZFkY-FNY-FkCFNCGY-FNY-GCFNC
174 51 abscld φψYC
175 77 174 remulcld φψR22YC
176 175 recnd φψR22YC
177 1 eqimss2i MZ
178 177 100 climconst2 R22YCMZ×R22YCR22YC
179 176 92 178 syl2anc φψZ×R22YCR22YC
180 1 uztrn2 NZnNnZ
181 15 180 sylan φψnNnZ
182 181 169 syl φψnNkZFkY-FNY-FkCFNCn=FnY-FNY-FnCFNC
183 164 abscld φψnZFnY-FNY-FnCFNC
184 181 183 syldan φψnNFnY-FNY-FnCFNC
185 182 184 eqeltrd φψnNkZFkY-FNY-FkCFNCn
186 ovex R22YCV
187 186 fvconst2 nZZ×R22YCn=R22YC
188 181 187 syl φψnNZ×R22YCn=R22YC
189 175 adantr φψnNR22YC
190 188 189 eqeltrd φψnNZ×R22YCn
191 181 111 syldan φψnNFn:X
192 191 ffnd φψnNFnFnX
193 65 adantr φψnNFN:X
194 193 ffnd φψnNFNFnX
195 ulmscl kZSDFkuXHXV
196 7 195 syl φXV
197 196 ad2antrr φψnNXV
198 18 adantr φψnNYX
199 fnfvof FnFnXFNFnXXVYXFnfFNY=FnYFNY
200 192 194 197 198 199 syl22anc φψnNFnfFNY=FnYFNY
201 8 adantr φψnNCX
202 fnfvof FnFnXFNFnXXVCXFnfFNC=FnCFNC
203 192 194 197 201 202 syl22anc φψnNFnfFNC=FnCFNC
204 200 203 oveq12d φψnNFnfFNYFnfFNC=FnY-FNY-FnCFNC
205 204 fveq2d φψnNFnfFNYFnfFNC=FnY-FNY-FnCFNC
206 44 18 sseldd φψYS
207 44 8 sseldd φψCS
208 206 207 ovresd φψYabsS×SC=YabsC
209 eqid abs=abs
210 209 cnmetdval YCYabsC=YC
211 49 50 210 syl2anc φψYabsC=YC
212 208 211 eqtrd φψYabsS×SC=YC
213 212 14 eqbrtrd φψYabsS×SC<U
214 cnxmet abs∞Met
215 xmetres2 abs∞MetSabsS×S∞MetS
216 214 47 215 sylancr φψabsS×S∞MetS
217 10 rpxrd φψU*
218 elbl3 absS×S∞MetSU*CSYSYCballabsS×SUYabsS×SC<U
219 216 217 207 206 218 syl22anc φψYCballabsS×SUYabsS×SC<U
220 213 219 mpbird φψYCballabsS×SU
221 220 adantr φψnNYCballabsS×SU
222 blcntr absS×S∞MetSCSU+CCballabsS×SU
223 216 207 10 222 syl3anc φψCCballabsS×SU
224 223 adantr φψnNCCballabsS×SU
225 221 224 jca φψnNYCballabsS×SUCCballabsS×SU
226 2 ad2antrr φψnNS
227 eqid absS×S=absS×S
228 44 adantr φψnNXS
229 fvexd φψnNyXFnyV
230 fvexd φψnNyXFNyV
231 191 feqmptd φψnNFn=yXFny
232 193 feqmptd φψnNFN=yXFNy
233 197 229 230 231 232 offval2 φψnNFnfFN=yXFnyFNy
234 191 ffvelcdmda φψnNyXFny
235 193 ffvelcdmda φψnNyXFNy
236 234 235 subcld φψnNyXFnyFNy
237 233 236 fmpt3d φψnNFnfFN:X
238 207 adantr φψnNCS
239 217 adantr φψnNU*
240 eqid CballabsS×SU=CballabsS×SU
241 13 adantr φψnNCballabsS×SUX
242 233 oveq2d φψnNSDFnfFN=dyXFnyFNydSy
243 fvexd φψnNyXFnSyV
244 231 oveq2d φψnNSDFn=dyXFnydSy
245 103 oveq2d k=nSDFk=SDFn
246 ovex SDFnV
247 245 27 246 fvmpt nZkZSDFkn=SDFn
248 181 247 syl φψnNkZSDFkn=SDFn
249 36 ad2antrr φψnNkZSDFk:ZX
250 249 181 ffvelcdmd φψnNkZSDFknX
251 248 250 eqeltrrd φψnNSDFnX
252 elmapi SDFnXFnS:X
253 251 252 syl φψnNFnS:X
254 253 feqmptd φψnNSDFn=yXFnSy
255 244 254 eqtr3d φψnNdyXFnydSy=yXFnSy
256 fvexd φψnNyXFNSyV
257 232 oveq2d φψnNSDFN=dyXFNydSy
258 41 adantr φψnNFNS:X
259 258 feqmptd φψnNSDFN=yXFNSy
260 257 259 eqtr3d φψnNdyXFNydSy=yXFNSy
261 226 234 243 255 235 256 260 dvmptsub φψnNdyXFnyFNydSy=yXFnSyFNSy
262 242 261 eqtrd φψnNSDFnfFN=yXFnSyFNSy
263 262 dmeqd φψnNdomFnfFNS=domyXFnSyFNSy
264 ovex FnSyFNSyV
265 eqid yXFnSyFNSy=yXFnSyFNSy
266 264 265 dmmpti domyXFnSyFNSy=X
267 263 266 eqtrdi φψnNdomFnfFNS=X
268 241 267 sseqtrrd φψnNCballabsS×SUdomFnfFNS
269 77 adantr φψnNR22
270 241 sselda φψnNyCballabsS×SUyX
271 262 fveq1d φψnNFnfFNSy=yXFnSyFNSyy
272 265 fvmpt2 yXFnSyFNSyVyXFnSyFNSyy=FnSyFNSy
273 264 272 mpan2 yXyXFnSyFNSyy=FnSyFNSy
274 271 273 sylan9eq φψnNyXFnfFNSy=FnSyFNSy
275 274 fveq2d φψnNyXFnfFNSy=FnSyFNSy
276 264 a1i φψnNyXFnSyFNSyV
277 226 236 276 261 dvmptcl φψnNyXFnSyFNSy
278 277 abscld φψnNyXFnSyFNSy
279 77 ad2antrr φψnNyXR22
280 253 ffvelcdmda φψnNyXFnSy
281 258 ffvelcdmda φψnNyXFNSy
282 280 281 abssubd φψnNyXFnSyFNSy=FNSyFnSy
283 fveq2 m=nFm=Fn
284 283 oveq2d m=nSDFm=SDFn
285 284 fveq1d m=nFmSx=FnSx
286 285 oveq2d m=nFNSxFmSx=FNSxFnSx
287 286 fveq2d m=nFNSxFmSx=FNSxFnSx
288 287 breq1d m=nFNSxFmSx<R22FNSxFnSx<R22
289 288 ralbidv m=nxXFNSxFmSx<R22xXFNSxFnSx<R22
290 289 rspccva mNxXFNSxFmSx<R22nNxXFNSxFnSx<R22
291 16 290 sylan φψnNxXFNSxFnSx<R22
292 fveq2 x=yFNSx=FNSy
293 fveq2 x=yFnSx=FnSy
294 292 293 oveq12d x=yFNSxFnSx=FNSyFnSy
295 294 fveq2d x=yFNSxFnSx=FNSyFnSy
296 295 breq1d x=yFNSxFnSx<R22FNSyFnSy<R22
297 296 rspccva xXFNSxFnSx<R22yXFNSyFnSy<R22
298 291 297 sylan φψnNyXFNSyFnSy<R22
299 282 298 eqbrtrd φψnNyXFnSyFNSy<R22
300 278 279 299 ltled φψnNyXFnSyFNSyR22
301 275 300 eqbrtrd φψnNyXFnfFNSyR22
302 270 301 syldan φψnNyCballabsS×SUFnfFNSyR22
303 226 227 228 237 238 239 240 268 269 302 dvlip2 φψnNYCballabsS×SUCCballabsS×SUFnfFNYFnfFNCR22YC
304 225 303 mpdan φψnNFnfFNYFnfFNCR22YC
305 205 304 eqbrtrrd φψnNFnY-FNY-FnCFNCR22YC
306 305 182 188 3brtr4d φψnNkZFkY-FNY-FkCFNCnZ×R22YCn
307 88 91 173 179 185 190 306 climle φψGY-FNY-GCFNCR22YC
308 85 abscld φψGY-FNY-GCFNC
309 51 52 absrpcld φψYC+
310 308 77 309 ledivmul2d φψGY-FNY-GCFNCYCR22GY-FNY-GCFNCR22YC
311 307 310 mpbird φψGY-FNY-GCFNCYCR22
312 87 311 eqbrtrd φψGYGCYCFNYFNCYCR22
313 10 rpred φψU
314 11 rpred φψW
315 174 313 314 14 12 lttrd φψYC<W
316 315 20 mpd φψFNYFNCYCFNSC<R22
317 71 73 77 77 312 316 leltaddd φψGYGCYCFNYFNCYC+FNYFNCYCFNSC<R22+R22
318 75 recnd φψR2
319 318 2halvesd φψR22+R22=R2
320 317 319 breqtrd φψGYGCYCFNYFNCYC+FNYFNCYCFNSC<R2
321 61 74 75 76 320 lelttrd φψGYGCYCFNSC<R2
322 53 57 58 59 321 17 abs3lemd φψGYGCYCHC<R