Metamath Proof Explorer


Theorem wessf1ornlem

Description: Given a function F on a well-ordered domain A there exists a subset of A such that F restricted to such subset is injective and onto the range of F (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses wessf1ornlem.f φFFnA
wessf1ornlem.a φAV
wessf1ornlem.r φRWeA
wessf1ornlem.g G=yranFιxF-1y|zF-1y¬zRx
Assertion wessf1ornlem φx𝒫AFx:x1-1 ontoranF

Proof

Step Hyp Ref Expression
1 wessf1ornlem.f φFFnA
2 wessf1ornlem.a φAV
3 wessf1ornlem.r φRWeA
4 wessf1ornlem.g G=yranFιxF-1y|zF-1y¬zRx
5 cnvimass F-1udomF
6 1 fndmd φdomF=A
7 6 adantr φuranFdomF=A
8 5 7 sseqtrid φuranFF-1uA
9 3 adantr φuranFRWeA
10 5 6 sseqtrid φF-1uA
11 2 10 ssexd φF-1uV
12 11 adantr φuranFF-1uV
13 inisegn0 uranFF-1u
14 13 biimpi uranFF-1u
15 14 adantl φuranFF-1u
16 wereu RWeAF-1uVF-1uAF-1u∃!vF-1utF-1u¬tRv
17 9 12 8 15 16 syl13anc φuranF∃!vF-1utF-1u¬tRv
18 riotacl ∃!vF-1utF-1u¬tRvιvF-1u|tF-1u¬tRvF-1u
19 17 18 syl φuranFιvF-1u|tF-1u¬tRvF-1u
20 8 19 sseldd φuranFιvF-1u|tF-1u¬tRvA
21 20 ralrimiva φuranFιvF-1u|tF-1u¬tRvA
22 sneq y=uy=u
23 22 imaeq2d y=uF-1y=F-1u
24 23 raleqdv y=uzF-1y¬zRxzF-1u¬zRx
25 23 24 riotaeqbidv y=uιxF-1y|zF-1y¬zRx=ιxF-1u|zF-1u¬zRx
26 breq1 z=tzRxtRx
27 26 notbid z=t¬zRx¬tRx
28 27 cbvralvw zF-1u¬zRxtF-1u¬tRx
29 breq2 x=vtRxtRv
30 29 notbid x=v¬tRx¬tRv
31 30 ralbidv x=vtF-1u¬tRxtF-1u¬tRv
32 28 31 bitrid x=vzF-1u¬zRxtF-1u¬tRv
33 32 cbvriotavw ιxF-1u|zF-1u¬zRx=ιvF-1u|tF-1u¬tRv
34 25 33 eqtrdi y=uιxF-1y|zF-1y¬zRx=ιvF-1u|tF-1u¬tRv
35 34 cbvmptv yranFιxF-1y|zF-1y¬zRx=uranFιvF-1u|tF-1u¬tRv
36 4 35 eqtri G=uranFιvF-1u|tF-1u¬tRv
37 36 rnmptss uranFιvF-1u|tF-1u¬tRvAranGA
38 21 37 syl φranGA
39 2 38 sselpwd φranG𝒫A
40 dffn3 FFnAF:AranF
41 1 40 sylib φF:AranF
42 41 38 fssresd φFranG:ranGranF
43 fvres wranGFranGw=Fw
44 43 eqcomd wranGFw=FranGw
45 44 ad2antrr wranGtranGFranGw=FranGtFw=FranGw
46 simpr wranGtranGFranGw=FranGtFranGw=FranGt
47 fvres tranGFranGt=Ft
48 47 ad2antlr wranGtranGFranGw=FranGtFranGt=Ft
49 45 46 48 3eqtrd wranGtranGFranGw=FranGtFw=Ft
50 49 3adantl1 φwranGtranGFranGw=FranGtFw=Ft
51 simpl1 φwranGtranGFw=Ftφ
52 simpl3 φwranGtranGFw=FttranG
53 simpl2 φwranGtranGFw=FtwranG
54 id Fw=FtFw=Ft
55 54 eqcomd Fw=FtFt=Fw
56 55 adantl φwranGtranGFw=FtFt=Fw
57 eleq1w b=wbranGwranG
58 57 3anbi3d b=wφtranGbranGφtranGwranG
59 fveq2 b=wFb=Fw
60 59 eqeq2d b=wFt=FbFt=Fw
61 58 60 anbi12d b=wφtranGbranGFt=FbφtranGwranGFt=Fw
62 breq1 b=wbRtwRt
63 62 notbid b=w¬bRt¬wRt
64 61 63 imbi12d b=wφtranGbranGFt=Fb¬bRtφtranGwranGFt=Fw¬wRt
65 eleq1w a=taranGtranG
66 65 3anbi2d a=tφaranGbranGφtranGbranG
67 fveqeq2 a=tFa=FbFt=Fb
68 66 67 anbi12d a=tφaranGbranGFa=FbφtranGbranGFt=Fb
69 breq2 a=tbRabRt
70 69 notbid a=t¬bRa¬bRt
71 68 70 imbi12d a=tφaranGbranGFa=Fb¬bRaφtranGbranGFt=Fb¬bRt
72 eleq1w t=btranGbranG
73 72 3anbi3d t=bφaranGtranGφaranGbranG
74 fveq2 t=bFt=Fb
75 74 eqeq2d t=bFa=FtFa=Fb
76 73 75 anbi12d t=bφaranGtranGFa=FtφaranGbranGFa=Fb
77 breq1 t=btRabRa
78 77 notbid t=b¬tRa¬bRa
79 76 78 imbi12d t=bφaranGtranGFa=Ft¬tRaφaranGbranGFa=Fb¬bRa
80 eleq1w w=awranGaranG
81 80 3anbi2d w=aφwranGtranGφaranGtranG
82 fveqeq2 w=aFw=FtFa=Ft
83 81 82 anbi12d w=aφwranGtranGFw=FtφaranGtranGFa=Ft
84 breq2 w=atRwtRa
85 84 notbid w=a¬tRw¬tRa
86 83 85 imbi12d w=aφwranGtranGFw=Ft¬tRwφaranGtranGFa=Ft¬tRa
87 36 elrnmpt wVwranGuranFw=ιvF-1u|tF-1u¬tRv
88 87 elv wranGuranFw=ιvF-1u|tF-1u¬tRv
89 88 biimpi wranGuranFw=ιvF-1u|tF-1u¬tRv
90 89 adantr wranGFw=FturanFw=ιvF-1u|tF-1u¬tRv
91 90 3ad2antl2 φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRv
92 simp3 φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvw=ιvF-1u|tF-1u¬tRv
93 92 eqcomd φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvιvF-1u|tF-1u¬tRv=w
94 simp11 φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvφ
95 id w=ιvF-1u|tF-1u¬tRvw=ιvF-1u|tF-1u¬tRv
96 breq2 v=wtRvtRw
97 96 notbid v=w¬tRv¬tRw
98 97 ralbidv v=wtF-1u¬tRvtF-1u¬tRw
99 98 cbvriotavw ιvF-1u|tF-1u¬tRv=ιwF-1u|tF-1u¬tRw
100 95 99 eqtr2di w=ιvF-1u|tF-1u¬tRvιwF-1u|tF-1u¬tRw=w
101 100 3ad2ant3 φuranFw=ιvF-1u|tF-1u¬tRvιwF-1u|tF-1u¬tRw=w
102 98 cbvreuvw ∃!vF-1utF-1u¬tRv∃!wF-1utF-1u¬tRw
103 17 102 sylib φuranF∃!wF-1utF-1u¬tRw
104 riota1 ∃!wF-1utF-1u¬tRwwF-1utF-1u¬tRwιwF-1u|tF-1u¬tRw=w
105 103 104 syl φuranFwF-1utF-1u¬tRwιwF-1u|tF-1u¬tRw=w
106 105 3adant3 φuranFw=ιvF-1u|tF-1u¬tRvwF-1utF-1u¬tRwιwF-1u|tF-1u¬tRw=w
107 101 106 mpbird φuranFw=ιvF-1u|tF-1u¬tRvwF-1utF-1u¬tRw
108 107 simpld φuranFw=ιvF-1u|tF-1u¬tRvwF-1u
109 94 108 syld3an1 φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvwF-1u
110 simp2 φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvuranF
111 94 110 17 syl2anc φwranGtranGuranFw=ιvF-1u|tF-1u¬tRv∃!vF-1utF-1u¬tRv
112 98 riota2 wF-1u∃!vF-1utF-1u¬tRvtF-1u¬tRwιvF-1u|tF-1u¬tRv=w
113 109 111 112 syl2anc φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvtF-1u¬tRwιvF-1u|tF-1u¬tRv=w
114 93 113 mpbird φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvtF-1u¬tRw
115 114 3adant1r φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRvtF-1u¬tRw
116 38 sselda φtranGtA
117 116 3adant2 φwranGtranGtA
118 117 adantr φwranGtranGFw=FttA
119 118 3ad2ant1 φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRvtA
120 55 ad2antlr φwranGtranGFw=FturanFFt=Fw
121 120 3adant3 φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRvFt=Fw
122 fniniseg FFnAwF-1uwAFw=u
123 94 1 122 3syl φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvwF-1uwAFw=u
124 109 123 mpbid φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvwAFw=u
125 124 simprd φwranGtranGuranFw=ιvF-1u|tF-1u¬tRvFw=u
126 125 3adant1r φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRvFw=u
127 121 126 eqtrd φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRvFt=u
128 fniniseg FFnAtF-1utAFt=u
129 1 128 syl φtF-1utAFt=u
130 129 3ad2ant1 φwranGtranGtF-1utAFt=u
131 130 ad2antrr φwranGtranGFw=FturanFtF-1utAFt=u
132 131 3adant3 φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRvtF-1utAFt=u
133 119 127 132 mpbir2and φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRvtF-1u
134 rspa tF-1u¬tRwtF-1u¬tRw
135 115 133 134 syl2anc φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRv¬tRw
136 135 rexlimdv3a φwranGtranGFw=FturanFw=ιvF-1u|tF-1u¬tRv¬tRw
137 91 136 mpd φwranGtranGFw=Ft¬tRw
138 86 137 chvarvv φaranGtranGFa=Ft¬tRa
139 79 138 chvarvv φaranGbranGFa=Fb¬bRa
140 71 139 chvarvv φtranGbranGFt=Fb¬bRt
141 64 140 chvarvv φtranGwranGFt=Fw¬wRt
142 51 52 53 56 141 syl31anc φwranGtranGFw=Ft¬wRt
143 weso RWeAROrA
144 3 143 syl φROrA
145 144 adantr φFw=FtROrA
146 145 3ad2antl1 φwranGtranGFw=FtROrA
147 38 sselda φwranGwA
148 147 3adant3 φwranGtranGwA
149 148 adantr φwranGtranGFw=FtwA
150 sotrieq2 ROrAwAtAw=t¬wRt¬tRw
151 146 149 118 150 syl12anc φwranGtranGFw=Ftw=t¬wRt¬tRw
152 142 137 151 mpbir2and φwranGtranGFw=Ftw=t
153 50 152 syldan φwranGtranGFranGw=FranGtw=t
154 153 ex φwranGtranGFranGw=FranGtw=t
155 154 3expb φwranGtranGFranGw=FranGtw=t
156 155 ralrimivva φwranGtranGFranGw=FranGtw=t
157 dff13 FranG:ranG1-1ranFFranG:ranGranFwranGtranGFranGw=FranGtw=t
158 42 156 157 sylanbrc φFranG:ranG1-1ranF
159 riotaex ιvF-1u|tF-1u¬tRvV
160 159 rgenw uranFιvF-1u|tF-1u¬tRvV
161 36 fnmpt uranFιvF-1u|tF-1u¬tRvVGFnranF
162 160 161 mp1i φGFnranF
163 dffn3 GFnranFG:ranFranG
164 162 163 sylib φG:ranFranG
165 164 ffvelcdmda φuranFGuranG
166 165 fvresd φuranFFranGGu=FGu
167 simpr φuranFuranF
168 159 a1i φuranFιvF-1u|tF-1u¬tRvV
169 4 34 167 168 fvmptd3 φuranFGu=ιvF-1u|tF-1u¬tRv
170 169 19 eqeltrd φuranFGuF-1u
171 fvex GuV
172 eleq1 w=GuwF-1uGuF-1u
173 eleq1 w=GuwAGuA
174 fveqeq2 w=GuFw=uFGu=u
175 173 174 anbi12d w=GuwAFw=uGuAFGu=u
176 172 175 bibi12d w=GuwF-1uwAFw=uGuF-1uGuAFGu=u
177 176 imbi2d w=GuφwF-1uwAFw=uφGuF-1uGuAFGu=u
178 1 122 syl φwF-1uwAFw=u
179 171 177 178 vtocl φGuF-1uGuAFGu=u
180 179 adantr φuranFGuF-1uGuAFGu=u
181 170 180 mpbid φuranFGuAFGu=u
182 181 simprd φuranFFGu=u
183 166 182 eqtr2d φuranFu=FranGGu
184 fveq2 w=GuFranGw=FranGGu
185 184 rspceeqv GuranGu=FranGGuwranGu=FranGw
186 165 183 185 syl2anc φuranFwranGu=FranGw
187 186 ralrimiva φuranFwranGu=FranGw
188 dffo3 FranG:ranGontoranFFranG:ranGranFuranFwranGu=FranGw
189 42 187 188 sylanbrc φFranG:ranGontoranF
190 df-f1o FranG:ranG1-1 ontoranFFranG:ranG1-1ranFFranG:ranGontoranF
191 158 189 190 sylanbrc φFranG:ranG1-1 ontoranF
192 reseq2 v=ranGFv=FranG
193 id v=ranGv=ranG
194 eqidd v=ranGranF=ranF
195 192 193 194 f1oeq123d v=ranGFv:v1-1 ontoranFFranG:ranG1-1 ontoranF
196 195 rspcev ranG𝒫AFranG:ranG1-1 ontoranFv𝒫AFv:v1-1 ontoranF
197 39 191 196 syl2anc φv𝒫AFv:v1-1 ontoranF
198 reseq2 v=xFv=Fx
199 id v=xv=x
200 eqidd v=xranF=ranF
201 198 199 200 f1oeq123d v=xFv:v1-1 ontoranFFx:x1-1 ontoranF
202 201 cbvrexvw v𝒫AFv:v1-1 ontoranFx𝒫AFx:x1-1 ontoranF
203 197 202 sylib φx𝒫AFx:x1-1 ontoranF