| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvnmul.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvnmul.x |
|- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 3 |
|
dvnmul.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 4 |
|
dvnmul.cc |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
| 5 |
|
dvnmul.n |
|- ( ph -> N e. NN0 ) |
| 6 |
|
dvnmulf |
|- F = ( x e. X |-> A ) |
| 7 |
|
dvnmul.f |
|- G = ( x e. X |-> B ) |
| 8 |
|
dvnmul.dvnf |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn F ) ` k ) : X --> CC ) |
| 9 |
|
dvnmul.dvng |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn G ) ` k ) : X --> CC ) |
| 10 |
|
dvnmul.c |
|- C = ( k e. ( 0 ... N ) |-> ( ( S Dn F ) ` k ) ) |
| 11 |
|
dvnmul.d |
|- D = ( k e. ( 0 ... N ) |-> ( ( S Dn G ) ` k ) ) |
| 12 |
|
id |
|- ( ph -> ph ) |
| 13 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 14 |
5 13
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 15 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 0 ) -> N e. ( 0 ... N ) ) |
| 16 |
14 15
|
syl |
|- ( ph -> N e. ( 0 ... N ) ) |
| 17 |
|
eleq1 |
|- ( n = N -> ( n e. ( 0 ... N ) <-> N e. ( 0 ... N ) ) ) |
| 18 |
|
fveq2 |
|- ( n = N -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) ) |
| 19 |
|
oveq2 |
|- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
| 20 |
19
|
sumeq1d |
|- ( n = N -> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... N ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) |
| 21 |
|
oveq1 |
|- ( n = N -> ( n _C k ) = ( N _C k ) ) |
| 22 |
|
fvoveq1 |
|- ( n = N -> ( D ` ( n - k ) ) = ( D ` ( N - k ) ) ) |
| 23 |
22
|
fveq1d |
|- ( n = N -> ( ( D ` ( n - k ) ) ` x ) = ( ( D ` ( N - k ) ) ` x ) ) |
| 24 |
23
|
oveq2d |
|- ( n = N -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) |
| 25 |
21 24
|
oveq12d |
|- ( n = N -> ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) = ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) |
| 26 |
25
|
sumeq2sdv |
|- ( n = N -> sum_ k e. ( 0 ... N ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) |
| 27 |
20 26
|
eqtrd |
|- ( n = N -> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) |
| 28 |
27
|
mpteq2dv |
|- ( n = N -> ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) |
| 29 |
18 28
|
eqeq12d |
|- ( n = N -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) |
| 30 |
29
|
imbi2d |
|- ( n = N -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) ) |
| 31 |
17 30
|
imbi12d |
|- ( n = N -> ( ( n e. ( 0 ... N ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) ) <-> ( N e. ( 0 ... N ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) ) ) |
| 32 |
|
fveq2 |
|- ( m = 0 -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) ) |
| 33 |
|
simpl |
|- ( ( m = 0 /\ x e. X ) -> m = 0 ) |
| 34 |
33
|
oveq2d |
|- ( ( m = 0 /\ x e. X ) -> ( 0 ... m ) = ( 0 ... 0 ) ) |
| 35 |
|
simpll |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> m = 0 ) |
| 36 |
35
|
oveq1d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( m _C k ) = ( 0 _C k ) ) |
| 37 |
35
|
fvoveq1d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( D ` ( m - k ) ) = ( D ` ( 0 - k ) ) ) |
| 38 |
37
|
fveq1d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( ( D ` ( m - k ) ) ` x ) = ( ( D ` ( 0 - k ) ) ` x ) ) |
| 39 |
38
|
oveq2d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) |
| 40 |
36 39
|
oveq12d |
|- ( ( ( m = 0 /\ x e. X ) /\ k e. ( 0 ... 0 ) ) -> ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) |
| 41 |
34 40
|
sumeq12rdv |
|- ( ( m = 0 /\ x e. X ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) |
| 42 |
41
|
mpteq2dva |
|- ( m = 0 -> ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) |
| 43 |
32 42
|
eqeq12d |
|- ( m = 0 -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) ) |
| 44 |
43
|
imbi2d |
|- ( m = 0 -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) ) ) |
| 45 |
|
fveq2 |
|- ( m = i -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) |
| 46 |
|
simpl |
|- ( ( m = i /\ x e. X ) -> m = i ) |
| 47 |
46
|
oveq2d |
|- ( ( m = i /\ x e. X ) -> ( 0 ... m ) = ( 0 ... i ) ) |
| 48 |
|
simpll |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> m = i ) |
| 49 |
48
|
oveq1d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( m _C k ) = ( i _C k ) ) |
| 50 |
48
|
fvoveq1d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( D ` ( m - k ) ) = ( D ` ( i - k ) ) ) |
| 51 |
50
|
fveq1d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( m - k ) ) ` x ) = ( ( D ` ( i - k ) ) ` x ) ) |
| 52 |
51
|
oveq2d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) |
| 53 |
49 52
|
oveq12d |
|- ( ( ( m = i /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) |
| 54 |
47 53
|
sumeq12rdv |
|- ( ( m = i /\ x e. X ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) |
| 55 |
54
|
mpteq2dva |
|- ( m = i -> ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) |
| 56 |
45 55
|
eqeq12d |
|- ( m = i -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) |
| 57 |
56
|
imbi2d |
|- ( m = i -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) ) |
| 58 |
|
fveq2 |
|- ( m = ( i + 1 ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) ) |
| 59 |
|
simpl |
|- ( ( m = ( i + 1 ) /\ x e. X ) -> m = ( i + 1 ) ) |
| 60 |
59
|
oveq2d |
|- ( ( m = ( i + 1 ) /\ x e. X ) -> ( 0 ... m ) = ( 0 ... ( i + 1 ) ) ) |
| 61 |
|
simpll |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> m = ( i + 1 ) ) |
| 62 |
61
|
oveq1d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( m _C k ) = ( ( i + 1 ) _C k ) ) |
| 63 |
61
|
fvoveq1d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( D ` ( m - k ) ) = ( D ` ( ( i + 1 ) - k ) ) ) |
| 64 |
63
|
fveq1d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( D ` ( m - k ) ) ` x ) = ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) |
| 65 |
64
|
oveq2d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
| 66 |
62 65
|
oveq12d |
|- ( ( ( m = ( i + 1 ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 67 |
60 66
|
sumeq12rdv |
|- ( ( m = ( i + 1 ) /\ x e. X ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 68 |
67
|
mpteq2dva |
|- ( m = ( i + 1 ) -> ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 69 |
58 68
|
eqeq12d |
|- ( m = ( i + 1 ) -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
| 70 |
69
|
imbi2d |
|- ( m = ( i + 1 ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) ) |
| 71 |
|
fveq2 |
|- ( m = n -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) ) |
| 72 |
|
simpl |
|- ( ( m = n /\ x e. X ) -> m = n ) |
| 73 |
72
|
oveq2d |
|- ( ( m = n /\ x e. X ) -> ( 0 ... m ) = ( 0 ... n ) ) |
| 74 |
|
simpll |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> m = n ) |
| 75 |
74
|
oveq1d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( m _C k ) = ( n _C k ) ) |
| 76 |
74
|
fvoveq1d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( D ` ( m - k ) ) = ( D ` ( n - k ) ) ) |
| 77 |
76
|
fveq1d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( ( D ` ( m - k ) ) ` x ) = ( ( D ` ( n - k ) ) ` x ) ) |
| 78 |
77
|
oveq2d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) |
| 79 |
75 78
|
oveq12d |
|- ( ( ( m = n /\ x e. X ) /\ k e. ( 0 ... n ) ) -> ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) |
| 80 |
73 79
|
sumeq12rdv |
|- ( ( m = n /\ x e. X ) -> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) |
| 81 |
80
|
mpteq2dva |
|- ( m = n -> ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) |
| 82 |
71 81
|
eqeq12d |
|- ( m = n -> ( ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) <-> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) ) |
| 83 |
82
|
imbi2d |
|- ( m = n -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` m ) = ( x e. X |-> sum_ k e. ( 0 ... m ) ( ( m _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( m - k ) ) ` x ) ) ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) ) ) |
| 84 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 85 |
1 84
|
syl |
|- ( ph -> S C_ CC ) |
| 86 |
3 4
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( A x. B ) e. CC ) |
| 87 |
|
restsspw |
|- ( ( TopOpen ` CCfld ) |`t S ) C_ ~P S |
| 88 |
87 2
|
sselid |
|- ( ph -> X e. ~P S ) |
| 89 |
|
elpwi |
|- ( X e. ~P S -> X C_ S ) |
| 90 |
88 89
|
syl |
|- ( ph -> X C_ S ) |
| 91 |
|
cnex |
|- CC e. _V |
| 92 |
91
|
a1i |
|- ( ph -> CC e. _V ) |
| 93 |
86 90 92 1
|
mptelpm |
|- ( ph -> ( x e. X |-> ( A x. B ) ) e. ( CC ^pm S ) ) |
| 94 |
|
dvn0 |
|- ( ( S C_ CC /\ ( x e. X |-> ( A x. B ) ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> ( A x. B ) ) ) |
| 95 |
85 93 94
|
syl2anc |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> ( A x. B ) ) ) |
| 96 |
|
0z |
|- 0 e. ZZ |
| 97 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
| 98 |
96 97
|
ax-mp |
|- ( 0 ... 0 ) = { 0 } |
| 99 |
98
|
sumeq1i |
|- sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) |
| 100 |
99
|
a1i |
|- ( ( ph /\ x e. X ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) |
| 101 |
|
nfcvd |
|- ( ( ph /\ x e. X ) -> F/_ k ( A x. B ) ) |
| 102 |
|
nfv |
|- F/ k ( ph /\ x e. X ) |
| 103 |
|
oveq2 |
|- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
| 104 |
|
0nn0 |
|- 0 e. NN0 |
| 105 |
|
bcn0 |
|- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
| 106 |
104 105
|
ax-mp |
|- ( 0 _C 0 ) = 1 |
| 107 |
106
|
a1i |
|- ( k = 0 -> ( 0 _C 0 ) = 1 ) |
| 108 |
103 107
|
eqtrd |
|- ( k = 0 -> ( 0 _C k ) = 1 ) |
| 109 |
108
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( 0 _C k ) = 1 ) |
| 110 |
|
fveq2 |
|- ( k = 0 -> ( C ` k ) = ( C ` 0 ) ) |
| 111 |
110
|
adantl |
|- ( ( ph /\ k = 0 ) -> ( C ` k ) = ( C ` 0 ) ) |
| 112 |
|
fveq2 |
|- ( k = n -> ( ( S Dn F ) ` k ) = ( ( S Dn F ) ` n ) ) |
| 113 |
112
|
cbvmptv |
|- ( k e. ( 0 ... N ) |-> ( ( S Dn F ) ` k ) ) = ( n e. ( 0 ... N ) |-> ( ( S Dn F ) ` n ) ) |
| 114 |
10 113
|
eqtri |
|- C = ( n e. ( 0 ... N ) |-> ( ( S Dn F ) ` n ) ) |
| 115 |
|
fveq2 |
|- ( n = 0 -> ( ( S Dn F ) ` n ) = ( ( S Dn F ) ` 0 ) ) |
| 116 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... N ) ) |
| 117 |
14 116
|
syl |
|- ( ph -> 0 e. ( 0 ... N ) ) |
| 118 |
|
fvexd |
|- ( ph -> ( ( S Dn F ) ` 0 ) e. _V ) |
| 119 |
114 115 117 118
|
fvmptd3 |
|- ( ph -> ( C ` 0 ) = ( ( S Dn F ) ` 0 ) ) |
| 120 |
119
|
adantr |
|- ( ( ph /\ k = 0 ) -> ( C ` 0 ) = ( ( S Dn F ) ` 0 ) ) |
| 121 |
111 120
|
eqtrd |
|- ( ( ph /\ k = 0 ) -> ( C ` k ) = ( ( S Dn F ) ` 0 ) ) |
| 122 |
3 90 92 1
|
mptelpm |
|- ( ph -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
| 123 |
6 122
|
eqeltrid |
|- ( ph -> F e. ( CC ^pm S ) ) |
| 124 |
|
dvn0 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) ) -> ( ( S Dn F ) ` 0 ) = F ) |
| 125 |
85 123 124
|
syl2anc |
|- ( ph -> ( ( S Dn F ) ` 0 ) = F ) |
| 126 |
125
|
adantr |
|- ( ( ph /\ k = 0 ) -> ( ( S Dn F ) ` 0 ) = F ) |
| 127 |
121 126
|
eqtrd |
|- ( ( ph /\ k = 0 ) -> ( C ` k ) = F ) |
| 128 |
127
|
fveq1d |
|- ( ( ph /\ k = 0 ) -> ( ( C ` k ) ` x ) = ( F ` x ) ) |
| 129 |
128
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( C ` k ) ` x ) = ( F ` x ) ) |
| 130 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
| 131 |
6
|
fvmpt2 |
|- ( ( x e. X /\ A e. CC ) -> ( F ` x ) = A ) |
| 132 |
130 3 131
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( F ` x ) = A ) |
| 133 |
132
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( F ` x ) = A ) |
| 134 |
129 133
|
eqtrd |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( C ` k ) ` x ) = A ) |
| 135 |
|
oveq2 |
|- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
| 136 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 137 |
136
|
a1i |
|- ( k = 0 -> ( 0 - 0 ) = 0 ) |
| 138 |
135 137
|
eqtrd |
|- ( k = 0 -> ( 0 - k ) = 0 ) |
| 139 |
138
|
fveq2d |
|- ( k = 0 -> ( D ` ( 0 - k ) ) = ( D ` 0 ) ) |
| 140 |
139
|
fveq1d |
|- ( k = 0 -> ( ( D ` ( 0 - k ) ) ` x ) = ( ( D ` 0 ) ` x ) ) |
| 141 |
140
|
adantl |
|- ( ( ph /\ k = 0 ) -> ( ( D ` ( 0 - k ) ) ` x ) = ( ( D ` 0 ) ` x ) ) |
| 142 |
141
|
adantlr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( D ` ( 0 - k ) ) ` x ) = ( ( D ` 0 ) ` x ) ) |
| 143 |
|
fveq2 |
|- ( k = n -> ( ( S Dn G ) ` k ) = ( ( S Dn G ) ` n ) ) |
| 144 |
143
|
cbvmptv |
|- ( k e. ( 0 ... N ) |-> ( ( S Dn G ) ` k ) ) = ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) |
| 145 |
11 144
|
eqtri |
|- D = ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) |
| 146 |
145
|
fveq1i |
|- ( D ` 0 ) = ( ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ` 0 ) |
| 147 |
146
|
a1i |
|- ( ph -> ( D ` 0 ) = ( ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ` 0 ) ) |
| 148 |
|
eqidd |
|- ( ph -> ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) = ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ) |
| 149 |
|
fveq2 |
|- ( n = 0 -> ( ( S Dn G ) ` n ) = ( ( S Dn G ) ` 0 ) ) |
| 150 |
149
|
adantl |
|- ( ( ph /\ n = 0 ) -> ( ( S Dn G ) ` n ) = ( ( S Dn G ) ` 0 ) ) |
| 151 |
4 90 92 1
|
mptelpm |
|- ( ph -> ( x e. X |-> B ) e. ( CC ^pm S ) ) |
| 152 |
7 151
|
eqeltrid |
|- ( ph -> G e. ( CC ^pm S ) ) |
| 153 |
|
dvn0 |
|- ( ( S C_ CC /\ G e. ( CC ^pm S ) ) -> ( ( S Dn G ) ` 0 ) = G ) |
| 154 |
85 152 153
|
syl2anc |
|- ( ph -> ( ( S Dn G ) ` 0 ) = G ) |
| 155 |
154
|
adantr |
|- ( ( ph /\ n = 0 ) -> ( ( S Dn G ) ` 0 ) = G ) |
| 156 |
150 155
|
eqtrd |
|- ( ( ph /\ n = 0 ) -> ( ( S Dn G ) ` n ) = G ) |
| 157 |
7
|
a1i |
|- ( ph -> G = ( x e. X |-> B ) ) |
| 158 |
|
mptexg |
|- ( X e. ~P S -> ( x e. X |-> B ) e. _V ) |
| 159 |
88 158
|
syl |
|- ( ph -> ( x e. X |-> B ) e. _V ) |
| 160 |
157 159
|
eqeltrd |
|- ( ph -> G e. _V ) |
| 161 |
148 156 117 160
|
fvmptd |
|- ( ph -> ( ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ` 0 ) = G ) |
| 162 |
147 161
|
eqtrd |
|- ( ph -> ( D ` 0 ) = G ) |
| 163 |
162
|
fveq1d |
|- ( ph -> ( ( D ` 0 ) ` x ) = ( G ` x ) ) |
| 164 |
163
|
ad2antrr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( D ` 0 ) ` x ) = ( G ` x ) ) |
| 165 |
157 4
|
fvmpt2d |
|- ( ( ph /\ x e. X ) -> ( G ` x ) = B ) |
| 166 |
165
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( G ` x ) = B ) |
| 167 |
142 164 166
|
3eqtrd |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( D ` ( 0 - k ) ) ` x ) = B ) |
| 168 |
134 167
|
oveq12d |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) = ( A x. B ) ) |
| 169 |
109 168
|
oveq12d |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = ( 1 x. ( A x. B ) ) ) |
| 170 |
86
|
mullidd |
|- ( ( ph /\ x e. X ) -> ( 1 x. ( A x. B ) ) = ( A x. B ) ) |
| 171 |
170
|
adantr |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( 1 x. ( A x. B ) ) = ( A x. B ) ) |
| 172 |
169 171
|
eqtrd |
|- ( ( ( ph /\ x e. X ) /\ k = 0 ) -> ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = ( A x. B ) ) |
| 173 |
|
0re |
|- 0 e. RR |
| 174 |
173
|
a1i |
|- ( ( ph /\ x e. X ) -> 0 e. RR ) |
| 175 |
101 102 172 174 86
|
sumsnd |
|- ( ( ph /\ x e. X ) -> sum_ k e. { 0 } ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) = ( A x. B ) ) |
| 176 |
100 175
|
eqtr2d |
|- ( ( ph /\ x e. X ) -> ( A x. B ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) |
| 177 |
176
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A x. B ) ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) |
| 178 |
95 177
|
eqtrd |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) |
| 179 |
178
|
a1i |
|- ( N e. ( ZZ>= ` 0 ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` 0 ) = ( x e. X |-> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( 0 - k ) ) ` x ) ) ) ) ) ) |
| 180 |
|
simp3 |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> ph ) |
| 181 |
|
simp1 |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> i e. ( 0 ..^ N ) ) |
| 182 |
|
simp2 |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) |
| 183 |
|
pm3.35 |
|- ( ( ph /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) |
| 184 |
180 182 183
|
syl2anc |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) |
| 185 |
85
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> S C_ CC ) |
| 186 |
93
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( x e. X |-> ( A x. B ) ) e. ( CC ^pm S ) ) |
| 187 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ N ) -> i e. NN0 ) |
| 188 |
187
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> i e. NN0 ) |
| 189 |
|
dvnp1 |
|- ( ( S C_ CC /\ ( x e. X |-> ( A x. B ) ) e. ( CC ^pm S ) /\ i e. NN0 ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) ) |
| 190 |
185 186 188 189
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) ) |
| 191 |
190
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) ) |
| 192 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) |
| 193 |
192
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( S _D ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) ) = ( S _D ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) ) |
| 194 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
| 195 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 196 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> S e. { RR , CC } ) |
| 197 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 198 |
|
fzfid |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( 0 ... i ) e. Fin ) |
| 199 |
187
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i e. NN0 ) |
| 200 |
|
elfzelz |
|- ( k e. ( 0 ... i ) -> k e. ZZ ) |
| 201 |
200
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k e. ZZ ) |
| 202 |
199 201
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i _C k ) e. NN0 ) |
| 203 |
202
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i _C k ) e. CC ) |
| 204 |
203
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( i _C k ) e. CC ) |
| 205 |
204
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( i _C k ) e. CC ) |
| 206 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ph ) |
| 207 |
|
0zd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 e. ZZ ) |
| 208 |
|
elfzoel2 |
|- ( i e. ( 0 ..^ N ) -> N e. ZZ ) |
| 209 |
208
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> N e. ZZ ) |
| 210 |
|
elfzle1 |
|- ( k e. ( 0 ... i ) -> 0 <_ k ) |
| 211 |
210
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 <_ k ) |
| 212 |
201
|
zred |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k e. RR ) |
| 213 |
208
|
zred |
|- ( i e. ( 0 ..^ N ) -> N e. RR ) |
| 214 |
213
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> N e. RR ) |
| 215 |
187
|
nn0red |
|- ( i e. ( 0 ..^ N ) -> i e. RR ) |
| 216 |
215
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i e. RR ) |
| 217 |
|
elfzle2 |
|- ( k e. ( 0 ... i ) -> k <_ i ) |
| 218 |
217
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k <_ i ) |
| 219 |
|
elfzolt2 |
|- ( i e. ( 0 ..^ N ) -> i < N ) |
| 220 |
219
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i < N ) |
| 221 |
212 216 214 218 220
|
lelttrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k < N ) |
| 222 |
212 214 221
|
ltled |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k <_ N ) |
| 223 |
207 209 201 211 222
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k e. ( 0 ... N ) ) |
| 224 |
223
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> k e. ( 0 ... N ) ) |
| 225 |
10
|
a1i |
|- ( ph -> C = ( k e. ( 0 ... N ) |-> ( ( S Dn F ) ` k ) ) ) |
| 226 |
|
fvexd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn F ) ` k ) e. _V ) |
| 227 |
225 226
|
fvmpt2d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) = ( ( S Dn F ) ` k ) ) |
| 228 |
227
|
feq1d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( C ` k ) : X --> CC <-> ( ( S Dn F ) ` k ) : X --> CC ) ) |
| 229 |
8 228
|
mpbird |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) : X --> CC ) |
| 230 |
206 224 229
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` k ) : X --> CC ) |
| 231 |
230
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( C ` k ) : X --> CC ) |
| 232 |
|
simp3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> x e. X ) |
| 233 |
231 232
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( C ` k ) ` x ) e. CC ) |
| 234 |
187
|
nn0zd |
|- ( i e. ( 0 ..^ N ) -> i e. ZZ ) |
| 235 |
234
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i e. ZZ ) |
| 236 |
235 201
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. ZZ ) |
| 237 |
|
elfzel2 |
|- ( k e. ( 0 ... i ) -> i e. ZZ ) |
| 238 |
237
|
zred |
|- ( k e. ( 0 ... i ) -> i e. RR ) |
| 239 |
200
|
zred |
|- ( k e. ( 0 ... i ) -> k e. RR ) |
| 240 |
238 239
|
subge0d |
|- ( k e. ( 0 ... i ) -> ( 0 <_ ( i - k ) <-> k <_ i ) ) |
| 241 |
217 240
|
mpbird |
|- ( k e. ( 0 ... i ) -> 0 <_ ( i - k ) ) |
| 242 |
241
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 <_ ( i - k ) ) |
| 243 |
216 212
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. RR ) |
| 244 |
214 212
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - k ) e. RR ) |
| 245 |
173
|
a1i |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 e. RR ) |
| 246 |
214 245
|
jca |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N e. RR /\ 0 e. RR ) ) |
| 247 |
|
resubcl |
|- ( ( N e. RR /\ 0 e. RR ) -> ( N - 0 ) e. RR ) |
| 248 |
246 247
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - 0 ) e. RR ) |
| 249 |
216 214 212 220
|
ltsub1dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) < ( N - k ) ) |
| 250 |
245 212 214 211
|
lesub2dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - k ) <_ ( N - 0 ) ) |
| 251 |
243 244 248 249 250
|
ltletrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) < ( N - 0 ) ) |
| 252 |
213
|
recnd |
|- ( i e. ( 0 ..^ N ) -> N e. CC ) |
| 253 |
252
|
subid1d |
|- ( i e. ( 0 ..^ N ) -> ( N - 0 ) = N ) |
| 254 |
253
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - 0 ) = N ) |
| 255 |
251 254
|
breqtrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) < N ) |
| 256 |
243 214 255
|
ltled |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) <_ N ) |
| 257 |
207 209 236 242 256
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. ( 0 ... N ) ) |
| 258 |
257
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. ( 0 ... N ) ) |
| 259 |
|
ovex |
|- ( i - k ) e. _V |
| 260 |
|
eleq1 |
|- ( j = ( i - k ) -> ( j e. ( 0 ... N ) <-> ( i - k ) e. ( 0 ... N ) ) ) |
| 261 |
260
|
anbi2d |
|- ( j = ( i - k ) -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ ( i - k ) e. ( 0 ... N ) ) ) ) |
| 262 |
|
fveq2 |
|- ( j = ( i - k ) -> ( ( S Dn G ) ` j ) = ( ( S Dn G ) ` ( i - k ) ) ) |
| 263 |
262
|
feq1d |
|- ( j = ( i - k ) -> ( ( ( S Dn G ) ` j ) : X --> CC <-> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) ) |
| 264 |
261 263
|
imbi12d |
|- ( j = ( i - k ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) <-> ( ( ph /\ ( i - k ) e. ( 0 ... N ) ) -> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) ) ) |
| 265 |
|
nfv |
|- F/ k ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) |
| 266 |
|
eleq1 |
|- ( k = j -> ( k e. ( 0 ... N ) <-> j e. ( 0 ... N ) ) ) |
| 267 |
266
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. ( 0 ... N ) ) <-> ( ph /\ j e. ( 0 ... N ) ) ) ) |
| 268 |
|
fveq2 |
|- ( k = j -> ( ( S Dn G ) ` k ) = ( ( S Dn G ) ` j ) ) |
| 269 |
268
|
feq1d |
|- ( k = j -> ( ( ( S Dn G ) ` k ) : X --> CC <-> ( ( S Dn G ) ` j ) : X --> CC ) ) |
| 270 |
267 269
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn G ) ` k ) : X --> CC ) <-> ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) ) ) |
| 271 |
265 270 9
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) |
| 272 |
259 264 271
|
vtocl |
|- ( ( ph /\ ( i - k ) e. ( 0 ... N ) ) -> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) |
| 273 |
206 258 272
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) |
| 274 |
|
fveq2 |
|- ( n = ( i - k ) -> ( ( S Dn G ) ` n ) = ( ( S Dn G ) ` ( i - k ) ) ) |
| 275 |
|
fvexd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( i - k ) ) e. _V ) |
| 276 |
145 274 257 275
|
fvmptd3 |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( D ` ( i - k ) ) = ( ( S Dn G ) ` ( i - k ) ) ) |
| 277 |
276
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( i - k ) ) = ( ( S Dn G ) ` ( i - k ) ) ) |
| 278 |
277
|
feq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( i - k ) ) : X --> CC <-> ( ( S Dn G ) ` ( i - k ) ) : X --> CC ) ) |
| 279 |
273 278
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( i - k ) ) : X --> CC ) |
| 280 |
279
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( D ` ( i - k ) ) : X --> CC ) |
| 281 |
280 232
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( D ` ( i - k ) ) ` x ) e. CC ) |
| 282 |
233 281
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) e. CC ) |
| 283 |
205 282
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) e. CC ) |
| 284 |
205
|
3expa |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( i _C k ) e. CC ) |
| 285 |
235
|
peano2zd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i + 1 ) e. ZZ ) |
| 286 |
285 201
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) e. ZZ ) |
| 287 |
|
peano2re |
|- ( i e. RR -> ( i + 1 ) e. RR ) |
| 288 |
238 287
|
syl |
|- ( k e. ( 0 ... i ) -> ( i + 1 ) e. RR ) |
| 289 |
|
peano2re |
|- ( k e. RR -> ( k + 1 ) e. RR ) |
| 290 |
239 289
|
syl |
|- ( k e. ( 0 ... i ) -> ( k + 1 ) e. RR ) |
| 291 |
239
|
ltp1d |
|- ( k e. ( 0 ... i ) -> k < ( k + 1 ) ) |
| 292 |
|
1red |
|- ( k e. ( 0 ... i ) -> 1 e. RR ) |
| 293 |
239 238 292 217
|
leadd1dd |
|- ( k e. ( 0 ... i ) -> ( k + 1 ) <_ ( i + 1 ) ) |
| 294 |
239 290 288 291 293
|
ltletrd |
|- ( k e. ( 0 ... i ) -> k < ( i + 1 ) ) |
| 295 |
239 288 294
|
ltled |
|- ( k e. ( 0 ... i ) -> k <_ ( i + 1 ) ) |
| 296 |
295
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k <_ ( i + 1 ) ) |
| 297 |
216 287
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i + 1 ) e. RR ) |
| 298 |
297 212
|
subge0d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( 0 <_ ( ( i + 1 ) - k ) <-> k <_ ( i + 1 ) ) ) |
| 299 |
296 298
|
mpbird |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 <_ ( ( i + 1 ) - k ) ) |
| 300 |
297 212
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) e. RR ) |
| 301 |
|
elfzop1le2 |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) <_ N ) |
| 302 |
301
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i + 1 ) <_ N ) |
| 303 |
297 214 212 302
|
lesub1dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) <_ ( N - k ) ) |
| 304 |
250 254
|
breqtrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( N - k ) <_ N ) |
| 305 |
300 244 214 303 304
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) <_ N ) |
| 306 |
207 209 286 299 305
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
| 307 |
306
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
| 308 |
|
ovex |
|- ( ( i + 1 ) - k ) e. _V |
| 309 |
|
eleq1 |
|- ( j = ( ( i + 1 ) - k ) -> ( j e. ( 0 ... N ) <-> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) ) |
| 310 |
309
|
anbi2d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) ) ) |
| 311 |
|
fveq2 |
|- ( j = ( ( i + 1 ) - k ) -> ( ( S Dn G ) ` j ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
| 312 |
311
|
feq1d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( ( S Dn G ) ` j ) : X --> CC <-> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) ) |
| 313 |
310 312
|
imbi12d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( ( S Dn G ) ` j ) : X --> CC ) <-> ( ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) ) ) |
| 314 |
308 313 271
|
vtocl |
|- ( ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) |
| 315 |
206 307 314
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) |
| 316 |
145
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> D = ( n e. ( 0 ... N ) |-> ( ( S Dn G ) ` n ) ) ) |
| 317 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ n = ( ( i + 1 ) - k ) ) -> n = ( ( i + 1 ) - k ) ) |
| 318 |
317
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ n = ( ( i + 1 ) - k ) ) -> ( ( S Dn G ) ` n ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
| 319 |
|
fvexd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) e. _V ) |
| 320 |
316 318 307 319
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( ( i + 1 ) - k ) ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
| 321 |
320
|
feq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) : X --> CC <-> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) : X --> CC ) ) |
| 322 |
315 321
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) |
| 323 |
322
|
ffvelcdmda |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) |
| 324 |
233
|
3expa |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( C ` k ) ` x ) e. CC ) |
| 325 |
323 324
|
mulcomd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
| 326 |
325
|
oveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) = ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 327 |
201
|
peano2zd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) e. ZZ ) |
| 328 |
173
|
a1i |
|- ( k e. ( 0 ... i ) -> 0 e. RR ) |
| 329 |
328 239 290 210 291
|
lelttrd |
|- ( k e. ( 0 ... i ) -> 0 < ( k + 1 ) ) |
| 330 |
328 290 329
|
ltled |
|- ( k e. ( 0 ... i ) -> 0 <_ ( k + 1 ) ) |
| 331 |
330
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 0 <_ ( k + 1 ) ) |
| 332 |
212 289
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) e. RR ) |
| 333 |
293
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) <_ ( i + 1 ) ) |
| 334 |
332 297 214 333 302
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) <_ N ) |
| 335 |
207 209 327 331 334
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) e. ( 0 ... N ) ) |
| 336 |
335
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( k + 1 ) e. ( 0 ... N ) ) |
| 337 |
|
ovex |
|- ( k + 1 ) e. _V |
| 338 |
|
eleq1 |
|- ( j = ( k + 1 ) -> ( j e. ( 0 ... N ) <-> ( k + 1 ) e. ( 0 ... N ) ) ) |
| 339 |
338
|
anbi2d |
|- ( j = ( k + 1 ) -> ( ( ph /\ j e. ( 0 ... N ) ) <-> ( ph /\ ( k + 1 ) e. ( 0 ... N ) ) ) ) |
| 340 |
|
fveq2 |
|- ( j = ( k + 1 ) -> ( C ` j ) = ( C ` ( k + 1 ) ) ) |
| 341 |
340
|
feq1d |
|- ( j = ( k + 1 ) -> ( ( C ` j ) : X --> CC <-> ( C ` ( k + 1 ) ) : X --> CC ) ) |
| 342 |
339 341
|
imbi12d |
|- ( j = ( k + 1 ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( C ` j ) : X --> CC ) <-> ( ( ph /\ ( k + 1 ) e. ( 0 ... N ) ) -> ( C ` ( k + 1 ) ) : X --> CC ) ) ) |
| 343 |
|
nfv |
|- F/ k ( ph /\ j e. ( 0 ... N ) ) |
| 344 |
|
nfmpt1 |
|- F/_ k ( k e. ( 0 ... N ) |-> ( ( S Dn F ) ` k ) ) |
| 345 |
10 344
|
nfcxfr |
|- F/_ k C |
| 346 |
|
nfcv |
|- F/_ k j |
| 347 |
345 346
|
nffv |
|- F/_ k ( C ` j ) |
| 348 |
|
nfcv |
|- F/_ k X |
| 349 |
|
nfcv |
|- F/_ k CC |
| 350 |
347 348 349
|
nff |
|- F/ k ( C ` j ) : X --> CC |
| 351 |
343 350
|
nfim |
|- F/ k ( ( ph /\ j e. ( 0 ... N ) ) -> ( C ` j ) : X --> CC ) |
| 352 |
|
fveq2 |
|- ( k = j -> ( C ` k ) = ( C ` j ) ) |
| 353 |
352
|
feq1d |
|- ( k = j -> ( ( C ` k ) : X --> CC <-> ( C ` j ) : X --> CC ) ) |
| 354 |
267 353
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) : X --> CC ) <-> ( ( ph /\ j e. ( 0 ... N ) ) -> ( C ` j ) : X --> CC ) ) ) |
| 355 |
351 354 229
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( C ` j ) : X --> CC ) |
| 356 |
337 342 355
|
vtocl |
|- ( ( ph /\ ( k + 1 ) e. ( 0 ... N ) ) -> ( C ` ( k + 1 ) ) : X --> CC ) |
| 357 |
206 336 356
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` ( k + 1 ) ) : X --> CC ) |
| 358 |
357
|
ffvelcdmda |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( C ` ( k + 1 ) ) ` x ) e. CC ) |
| 359 |
281
|
3expa |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( D ` ( i - k ) ) ` x ) e. CC ) |
| 360 |
358 359
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) e. CC ) |
| 361 |
323 324
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) e. CC ) |
| 362 |
360 361
|
addcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) e. CC ) |
| 363 |
326 362
|
eqeltrrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
| 364 |
284 363
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) e. CC ) |
| 365 |
364
|
3impa |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) /\ x e. X ) -> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) e. CC ) |
| 366 |
206 1
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> S e. { RR , CC } ) |
| 367 |
173
|
a1i |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> 0 e. RR ) |
| 368 |
206 2
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 369 |
366 368 204
|
dvmptconst |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( i _C k ) ) ) = ( x e. X |-> 0 ) ) |
| 370 |
282
|
3expa |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) e. CC ) |
| 371 |
206 224 227
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` k ) = ( ( S Dn F ) ` k ) ) |
| 372 |
371
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` k ) = ( C ` k ) ) |
| 373 |
230
|
feqmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` k ) = ( x e. X |-> ( ( C ` k ) ` x ) ) ) |
| 374 |
372 373
|
eqtr2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( x e. X |-> ( ( C ` k ) ` x ) ) = ( ( S Dn F ) ` k ) ) |
| 375 |
374
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( C ` k ) ` x ) ) ) = ( S _D ( ( S Dn F ) ` k ) ) ) |
| 376 |
366 84
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> S C_ CC ) |
| 377 |
206 123
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> F e. ( CC ^pm S ) ) |
| 378 |
|
elfznn0 |
|- ( k e. ( 0 ... i ) -> k e. NN0 ) |
| 379 |
378
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> k e. NN0 ) |
| 380 |
|
dvnp1 |
|- ( ( S C_ CC /\ F e. ( CC ^pm S ) /\ k e. NN0 ) -> ( ( S Dn F ) ` ( k + 1 ) ) = ( S _D ( ( S Dn F ) ` k ) ) ) |
| 381 |
376 377 379 380
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` ( k + 1 ) ) = ( S _D ( ( S Dn F ) ` k ) ) ) |
| 382 |
381
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( ( S Dn F ) ` k ) ) = ( ( S Dn F ) ` ( k + 1 ) ) ) |
| 383 |
|
fveq2 |
|- ( n = ( k + 1 ) -> ( ( S Dn F ) ` n ) = ( ( S Dn F ) ` ( k + 1 ) ) ) |
| 384 |
|
fvexd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` ( k + 1 ) ) e. _V ) |
| 385 |
114 383 336 384
|
fvmptd3 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` ( k + 1 ) ) = ( ( S Dn F ) ` ( k + 1 ) ) ) |
| 386 |
385
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` ( k + 1 ) ) = ( C ` ( k + 1 ) ) ) |
| 387 |
357
|
feqmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( C ` ( k + 1 ) ) = ( x e. X |-> ( ( C ` ( k + 1 ) ) ` x ) ) ) |
| 388 |
386 387
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn F ) ` ( k + 1 ) ) = ( x e. X |-> ( ( C ` ( k + 1 ) ) ` x ) ) ) |
| 389 |
375 382 388
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( C ` k ) ` x ) ) ) = ( x e. X |-> ( ( C ` ( k + 1 ) ) ` x ) ) ) |
| 390 |
277
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( i - k ) ) = ( D ` ( i - k ) ) ) |
| 391 |
279
|
feqmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( i - k ) ) = ( x e. X |-> ( ( D ` ( i - k ) ) ` x ) ) ) |
| 392 |
390 391
|
eqtr2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( x e. X |-> ( ( D ` ( i - k ) ) ` x ) ) = ( ( S Dn G ) ` ( i - k ) ) ) |
| 393 |
392
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( D ` ( i - k ) ) ` x ) ) ) = ( S _D ( ( S Dn G ) ` ( i - k ) ) ) ) |
| 394 |
206 152
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> G e. ( CC ^pm S ) ) |
| 395 |
|
fznn0sub |
|- ( k e. ( 0 ... i ) -> ( i - k ) e. NN0 ) |
| 396 |
395
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( i - k ) e. NN0 ) |
| 397 |
|
dvnp1 |
|- ( ( S C_ CC /\ G e. ( CC ^pm S ) /\ ( i - k ) e. NN0 ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( S _D ( ( S Dn G ) ` ( i - k ) ) ) ) |
| 398 |
376 394 396 397
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( S _D ( ( S Dn G ) ` ( i - k ) ) ) ) |
| 399 |
398
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( ( S Dn G ) ` ( i - k ) ) ) = ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) ) |
| 400 |
216
|
recnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> i e. CC ) |
| 401 |
|
1cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> 1 e. CC ) |
| 402 |
212
|
recnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> k e. CC ) |
| 403 |
400 401 402
|
addsubd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) - k ) = ( ( i - k ) + 1 ) ) |
| 404 |
403
|
eqcomd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i - k ) + 1 ) = ( ( i + 1 ) - k ) ) |
| 405 |
404
|
fveq2d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
| 406 |
405
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) ) |
| 407 |
320
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i + 1 ) - k ) ) = ( D ` ( ( i + 1 ) - k ) ) ) |
| 408 |
322
|
feqmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( D ` ( ( i + 1 ) - k ) ) = ( x e. X |-> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
| 409 |
406 407 408
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( S Dn G ) ` ( ( i - k ) + 1 ) ) = ( x e. X |-> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
| 410 |
393 399 409
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( D ` ( i - k ) ) ` x ) ) ) = ( x e. X |-> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
| 411 |
366 324 358 389 359 323 410
|
dvmptmul |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) = ( x e. X |-> ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) ) ) |
| 412 |
366 284 367 369 370 362 411
|
dvmptmul |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> ( ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) ) ) ) |
| 413 |
370
|
mul02d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = 0 ) |
| 414 |
326
|
oveq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) = ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) x. ( i _C k ) ) ) |
| 415 |
363 284
|
mulcomd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) x. ( i _C k ) ) = ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 416 |
414 415
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) = ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 417 |
413 416
|
oveq12d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) ) = ( 0 + ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
| 418 |
364
|
addlidd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( 0 + ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 419 |
417 418
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) ) = ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 420 |
419
|
mpteq2dva |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( x e. X |-> ( ( 0 x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( D ` ( ( i + 1 ) - k ) ) ` x ) x. ( ( C ` k ) ` x ) ) ) x. ( i _C k ) ) ) ) = ( x e. X |-> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
| 421 |
412 420
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( S _D ( x e. X |-> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
| 422 |
194 195 196 197 198 283 365 421
|
dvmptfsum |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( S _D ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
| 423 |
204
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( i _C k ) e. CC ) |
| 424 |
360
|
an32s |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) e. CC ) |
| 425 |
|
anass |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) <-> ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( k e. ( 0 ... i ) /\ x e. X ) ) ) |
| 426 |
|
ancom |
|- ( ( k e. ( 0 ... i ) /\ x e. X ) <-> ( x e. X /\ k e. ( 0 ... i ) ) ) |
| 427 |
426
|
anbi2i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( k e. ( 0 ... i ) /\ x e. X ) ) <-> ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( x e. X /\ k e. ( 0 ... i ) ) ) ) |
| 428 |
|
anass |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) <-> ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( x e. X /\ k e. ( 0 ... i ) ) ) ) |
| 429 |
428
|
bicomi |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( x e. X /\ k e. ( 0 ... i ) ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) ) |
| 430 |
427 429
|
bitri |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( k e. ( 0 ... i ) /\ x e. X ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) ) |
| 431 |
425 430
|
bitri |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) <-> ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) ) |
| 432 |
431
|
imbi1i |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( C ` k ) ` x ) e. CC ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( C ` k ) ` x ) e. CC ) ) |
| 433 |
324 432
|
mpbi |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( C ` k ) ` x ) e. CC ) |
| 434 |
431
|
imbi1i |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) /\ x e. X ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) ) |
| 435 |
323 434
|
mpbi |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) |
| 436 |
433 435
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) e. CC ) |
| 437 |
423 424 436
|
adddid |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 438 |
437
|
sumeq2dv |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... i ) ( ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 439 |
198
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 0 ... i ) e. Fin ) |
| 440 |
423 424
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) e. CC ) |
| 441 |
423 436
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
| 442 |
439 440 441
|
fsumadd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 443 |
|
oveq2 |
|- ( k = h -> ( i _C k ) = ( i _C h ) ) |
| 444 |
|
fvoveq1 |
|- ( k = h -> ( C ` ( k + 1 ) ) = ( C ` ( h + 1 ) ) ) |
| 445 |
444
|
fveq1d |
|- ( k = h -> ( ( C ` ( k + 1 ) ) ` x ) = ( ( C ` ( h + 1 ) ) ` x ) ) |
| 446 |
|
oveq2 |
|- ( k = h -> ( i - k ) = ( i - h ) ) |
| 447 |
446
|
fveq2d |
|- ( k = h -> ( D ` ( i - k ) ) = ( D ` ( i - h ) ) ) |
| 448 |
447
|
fveq1d |
|- ( k = h -> ( ( D ` ( i - k ) ) ` x ) = ( ( D ` ( i - h ) ) ` x ) ) |
| 449 |
445 448
|
oveq12d |
|- ( k = h -> ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) = ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) |
| 450 |
443 449
|
oveq12d |
|- ( k = h -> ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) ) |
| 451 |
|
nfcv |
|- F/_ h ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) |
| 452 |
|
nfcv |
|- F/_ k ( i _C h ) |
| 453 |
|
nfcv |
|- F/_ k x. |
| 454 |
|
nfcv |
|- F/_ k ( h + 1 ) |
| 455 |
345 454
|
nffv |
|- F/_ k ( C ` ( h + 1 ) ) |
| 456 |
|
nfcv |
|- F/_ k x |
| 457 |
455 456
|
nffv |
|- F/_ k ( ( C ` ( h + 1 ) ) ` x ) |
| 458 |
|
nfmpt1 |
|- F/_ k ( k e. ( 0 ... N ) |-> ( ( S Dn G ) ` k ) ) |
| 459 |
11 458
|
nfcxfr |
|- F/_ k D |
| 460 |
|
nfcv |
|- F/_ k ( i - h ) |
| 461 |
459 460
|
nffv |
|- F/_ k ( D ` ( i - h ) ) |
| 462 |
461 456
|
nffv |
|- F/_ k ( ( D ` ( i - h ) ) ` x ) |
| 463 |
457 453 462
|
nfov |
|- F/_ k ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) |
| 464 |
452 453 463
|
nfov |
|- F/_ k ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) |
| 465 |
450 451 464
|
cbvsum |
|- sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = sum_ h e. ( 0 ... i ) ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) |
| 466 |
465
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = sum_ h e. ( 0 ... i ) ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) ) |
| 467 |
|
1zzd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> 1 e. ZZ ) |
| 468 |
96
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> 0 e. ZZ ) |
| 469 |
234
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> i e. ZZ ) |
| 470 |
|
nfv |
|- F/ k ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) |
| 471 |
|
nfcv |
|- F/_ k h |
| 472 |
|
nfcv |
|- F/_ k ( 0 ... i ) |
| 473 |
471 472
|
nfel |
|- F/ k h e. ( 0 ... i ) |
| 474 |
470 473
|
nfan |
|- F/ k ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) |
| 475 |
464 349
|
nfel |
|- F/ k ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC |
| 476 |
474 475
|
nfim |
|- F/ k ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) -> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC ) |
| 477 |
|
eleq1 |
|- ( k = h -> ( k e. ( 0 ... i ) <-> h e. ( 0 ... i ) ) ) |
| 478 |
477
|
anbi2d |
|- ( k = h -> ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) ) ) |
| 479 |
450
|
eleq1d |
|- ( k = h -> ( ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) e. CC <-> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC ) ) |
| 480 |
478 479
|
imbi12d |
|- ( k = h -> ( ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) e. CC ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) -> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC ) ) ) |
| 481 |
476 480 440
|
chvarfv |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ h e. ( 0 ... i ) ) -> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) e. CC ) |
| 482 |
|
oveq2 |
|- ( h = ( j - 1 ) -> ( i _C h ) = ( i _C ( j - 1 ) ) ) |
| 483 |
|
fvoveq1 |
|- ( h = ( j - 1 ) -> ( C ` ( h + 1 ) ) = ( C ` ( ( j - 1 ) + 1 ) ) ) |
| 484 |
483
|
fveq1d |
|- ( h = ( j - 1 ) -> ( ( C ` ( h + 1 ) ) ` x ) = ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) ) |
| 485 |
|
oveq2 |
|- ( h = ( j - 1 ) -> ( i - h ) = ( i - ( j - 1 ) ) ) |
| 486 |
485
|
fveq2d |
|- ( h = ( j - 1 ) -> ( D ` ( i - h ) ) = ( D ` ( i - ( j - 1 ) ) ) ) |
| 487 |
486
|
fveq1d |
|- ( h = ( j - 1 ) -> ( ( D ` ( i - h ) ) ` x ) = ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) |
| 488 |
484 487
|
oveq12d |
|- ( h = ( j - 1 ) -> ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) = ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) |
| 489 |
482 488
|
oveq12d |
|- ( h = ( j - 1 ) -> ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) = ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) ) |
| 490 |
467 468 469 481 489
|
fsumshft |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ h e. ( 0 ... i ) ( ( i _C h ) x. ( ( ( C ` ( h + 1 ) ) ` x ) x. ( ( D ` ( i - h ) ) ` x ) ) ) = sum_ j e. ( ( 0 + 1 ) ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) ) |
| 491 |
466 490
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = sum_ j e. ( ( 0 + 1 ) ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) ) |
| 492 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 493 |
492
|
oveq1i |
|- ( ( 0 + 1 ) ... ( i + 1 ) ) = ( 1 ... ( i + 1 ) ) |
| 494 |
493
|
sumeq1i |
|- sum_ j e. ( ( 0 + 1 ) ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) |
| 495 |
494
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( ( 0 + 1 ) ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) ) |
| 496 |
|
elfzelz |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j e. ZZ ) |
| 497 |
496
|
zcnd |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j e. CC ) |
| 498 |
|
1cnd |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 1 e. CC ) |
| 499 |
497 498
|
npcand |
|- ( j e. ( 1 ... ( i + 1 ) ) -> ( ( j - 1 ) + 1 ) = j ) |
| 500 |
499
|
fveq2d |
|- ( j e. ( 1 ... ( i + 1 ) ) -> ( C ` ( ( j - 1 ) + 1 ) ) = ( C ` j ) ) |
| 501 |
500
|
fveq1d |
|- ( j e. ( 1 ... ( i + 1 ) ) -> ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) = ( ( C ` j ) ` x ) ) |
| 502 |
501
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) = ( ( C ` j ) ` x ) ) |
| 503 |
215
|
recnd |
|- ( i e. ( 0 ..^ N ) -> i e. CC ) |
| 504 |
503
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> i e. CC ) |
| 505 |
497
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. CC ) |
| 506 |
498
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 1 e. CC ) |
| 507 |
504 505 506
|
subsub3d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i - ( j - 1 ) ) = ( ( i + 1 ) - j ) ) |
| 508 |
507
|
fveq2d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( D ` ( i - ( j - 1 ) ) ) = ( D ` ( ( i + 1 ) - j ) ) ) |
| 509 |
508
|
fveq1d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( D ` ( i - ( j - 1 ) ) ) ` x ) = ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) |
| 510 |
502 509
|
oveq12d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) = ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) |
| 511 |
510
|
oveq2d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
| 512 |
511
|
sumeq2dv |
|- ( i e. ( 0 ..^ N ) -> sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
| 513 |
512
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
| 514 |
|
nfv |
|- F/ j ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) |
| 515 |
|
nfcv |
|- F/_ j ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
| 516 |
|
fzfid |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 ... ( i + 1 ) ) e. Fin ) |
| 517 |
187
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> i e. NN0 ) |
| 518 |
496
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. ZZ ) |
| 519 |
|
1zzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 1 e. ZZ ) |
| 520 |
518 519
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( j - 1 ) e. ZZ ) |
| 521 |
517 520
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i _C ( j - 1 ) ) e. NN0 ) |
| 522 |
521
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
| 523 |
522
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
| 524 |
523
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
| 525 |
12
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ph ) |
| 526 |
|
0zd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 0 e. ZZ ) |
| 527 |
208
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> N e. ZZ ) |
| 528 |
173
|
a1i |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 0 e. RR ) |
| 529 |
496
|
zred |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j e. RR ) |
| 530 |
|
1red |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 1 e. RR ) |
| 531 |
|
0lt1 |
|- 0 < 1 |
| 532 |
531
|
a1i |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 0 < 1 ) |
| 533 |
|
elfzle1 |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 1 <_ j ) |
| 534 |
528 530 529 532 533
|
ltletrd |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 0 < j ) |
| 535 |
528 529 534
|
ltled |
|- ( j e. ( 1 ... ( i + 1 ) ) -> 0 <_ j ) |
| 536 |
535
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 0 <_ j ) |
| 537 |
529
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. RR ) |
| 538 |
215
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> i e. RR ) |
| 539 |
|
1red |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 1 e. RR ) |
| 540 |
538 539
|
readdcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i + 1 ) e. RR ) |
| 541 |
213
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> N e. RR ) |
| 542 |
|
elfzle2 |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j <_ ( i + 1 ) ) |
| 543 |
542
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j <_ ( i + 1 ) ) |
| 544 |
301
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i + 1 ) <_ N ) |
| 545 |
537 540 541 543 544
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j <_ N ) |
| 546 |
526 527 518 536 545
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. ( 0 ... N ) ) |
| 547 |
546
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. ( 0 ... N ) ) |
| 548 |
525 547 355
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( C ` j ) : X --> CC ) |
| 549 |
548
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( C ` j ) : X --> CC ) |
| 550 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> x e. X ) |
| 551 |
549 550
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( C ` j ) ` x ) e. CC ) |
| 552 |
234
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> i e. ZZ ) |
| 553 |
552
|
peano2zd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( i + 1 ) e. ZZ ) |
| 554 |
553 518
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) e. ZZ ) |
| 555 |
540 537
|
subge0d |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( 0 <_ ( ( i + 1 ) - j ) <-> j <_ ( i + 1 ) ) ) |
| 556 |
543 555
|
mpbird |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> 0 <_ ( ( i + 1 ) - j ) ) |
| 557 |
540 537
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) e. RR ) |
| 558 |
557
|
leidd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) <_ ( ( i + 1 ) - j ) ) |
| 559 |
529 534
|
elrpd |
|- ( j e. ( 1 ... ( i + 1 ) ) -> j e. RR+ ) |
| 560 |
559
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> j e. RR+ ) |
| 561 |
540 560
|
ltsubrpd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) < ( i + 1 ) ) |
| 562 |
557 540 541 561 544
|
ltletrd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) < N ) |
| 563 |
557 557 541 558 562
|
lelttrd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) < N ) |
| 564 |
557 541 563
|
ltled |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) <_ N ) |
| 565 |
526 527 554 556 564
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) e. ( 0 ... N ) ) |
| 566 |
565
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - j ) e. ( 0 ... N ) ) |
| 567 |
|
nfv |
|- F/ k ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) |
| 568 |
|
nfcv |
|- F/_ k ( ( i + 1 ) - j ) |
| 569 |
459 568
|
nffv |
|- F/_ k ( D ` ( ( i + 1 ) - j ) ) |
| 570 |
569 348 349
|
nff |
|- F/ k ( D ` ( ( i + 1 ) - j ) ) : X --> CC |
| 571 |
567 570
|
nfim |
|- F/ k ( ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) |
| 572 |
|
ovex |
|- ( ( i + 1 ) - j ) e. _V |
| 573 |
|
eleq1 |
|- ( k = ( ( i + 1 ) - j ) -> ( k e. ( 0 ... N ) <-> ( ( i + 1 ) - j ) e. ( 0 ... N ) ) ) |
| 574 |
573
|
anbi2d |
|- ( k = ( ( i + 1 ) - j ) -> ( ( ph /\ k e. ( 0 ... N ) ) <-> ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) ) ) |
| 575 |
|
fveq2 |
|- ( k = ( ( i + 1 ) - j ) -> ( D ` k ) = ( D ` ( ( i + 1 ) - j ) ) ) |
| 576 |
575
|
feq1d |
|- ( k = ( ( i + 1 ) - j ) -> ( ( D ` k ) : X --> CC <-> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) ) |
| 577 |
574 576
|
imbi12d |
|- ( k = ( ( i + 1 ) - j ) -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) <-> ( ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) ) ) |
| 578 |
11
|
a1i |
|- ( ph -> D = ( k e. ( 0 ... N ) |-> ( ( S Dn G ) ` k ) ) ) |
| 579 |
|
fvexd |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( S Dn G ) ` k ) e. _V ) |
| 580 |
578 579
|
fvmpt2d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) = ( ( S Dn G ) ` k ) ) |
| 581 |
580
|
feq1d |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( ( D ` k ) : X --> CC <-> ( ( S Dn G ) ` k ) : X --> CC ) ) |
| 582 |
9 581
|
mpbird |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) |
| 583 |
571 572 577 582
|
vtoclf |
|- ( ( ph /\ ( ( i + 1 ) - j ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) |
| 584 |
525 566 583
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) |
| 585 |
584
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( D ` ( ( i + 1 ) - j ) ) : X --> CC ) |
| 586 |
585 550
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( D ` ( ( i + 1 ) - j ) ) ` x ) e. CC ) |
| 587 |
551 586
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) e. CC ) |
| 588 |
524 587
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... ( i + 1 ) ) ) -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) e. CC ) |
| 589 |
|
1zzd |
|- ( i e. ( 0 ..^ N ) -> 1 e. ZZ ) |
| 590 |
234
|
peano2zd |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ZZ ) |
| 591 |
492
|
eqcomi |
|- 1 = ( 0 + 1 ) |
| 592 |
591
|
a1i |
|- ( i e. ( 0 ..^ N ) -> 1 = ( 0 + 1 ) ) |
| 593 |
173
|
a1i |
|- ( i e. ( 0 ..^ N ) -> 0 e. RR ) |
| 594 |
|
1red |
|- ( i e. ( 0 ..^ N ) -> 1 e. RR ) |
| 595 |
187
|
nn0ge0d |
|- ( i e. ( 0 ..^ N ) -> 0 <_ i ) |
| 596 |
593 215 594 595
|
leadd1dd |
|- ( i e. ( 0 ..^ N ) -> ( 0 + 1 ) <_ ( i + 1 ) ) |
| 597 |
592 596
|
eqbrtrd |
|- ( i e. ( 0 ..^ N ) -> 1 <_ ( i + 1 ) ) |
| 598 |
589 590 597
|
3jca |
|- ( i e. ( 0 ..^ N ) -> ( 1 e. ZZ /\ ( i + 1 ) e. ZZ /\ 1 <_ ( i + 1 ) ) ) |
| 599 |
|
eluz2 |
|- ( ( i + 1 ) e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ ( i + 1 ) e. ZZ /\ 1 <_ ( i + 1 ) ) ) |
| 600 |
598 599
|
sylibr |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( ZZ>= ` 1 ) ) |
| 601 |
|
eluzfz2 |
|- ( ( i + 1 ) e. ( ZZ>= ` 1 ) -> ( i + 1 ) e. ( 1 ... ( i + 1 ) ) ) |
| 602 |
600 601
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( 1 ... ( i + 1 ) ) ) |
| 603 |
602
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( i + 1 ) e. ( 1 ... ( i + 1 ) ) ) |
| 604 |
|
oveq1 |
|- ( j = ( i + 1 ) -> ( j - 1 ) = ( ( i + 1 ) - 1 ) ) |
| 605 |
604
|
oveq2d |
|- ( j = ( i + 1 ) -> ( i _C ( j - 1 ) ) = ( i _C ( ( i + 1 ) - 1 ) ) ) |
| 606 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( C ` j ) = ( C ` ( i + 1 ) ) ) |
| 607 |
606
|
fveq1d |
|- ( j = ( i + 1 ) -> ( ( C ` j ) ` x ) = ( ( C ` ( i + 1 ) ) ` x ) ) |
| 608 |
|
oveq2 |
|- ( j = ( i + 1 ) -> ( ( i + 1 ) - j ) = ( ( i + 1 ) - ( i + 1 ) ) ) |
| 609 |
608
|
fveq2d |
|- ( j = ( i + 1 ) -> ( D ` ( ( i + 1 ) - j ) ) = ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ) |
| 610 |
609
|
fveq1d |
|- ( j = ( i + 1 ) -> ( ( D ` ( ( i + 1 ) - j ) ) ` x ) = ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) |
| 611 |
607 610
|
oveq12d |
|- ( j = ( i + 1 ) -> ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
| 612 |
605 611
|
oveq12d |
|- ( j = ( i + 1 ) -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) ) |
| 613 |
514 515 516 588 603 612
|
fsumsplit1 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = ( ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ j e. ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) ) |
| 614 |
|
1cnd |
|- ( i e. ( 0 ..^ N ) -> 1 e. CC ) |
| 615 |
503 614
|
pncand |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) - 1 ) = i ) |
| 616 |
615
|
oveq2d |
|- ( i e. ( 0 ..^ N ) -> ( i _C ( ( i + 1 ) - 1 ) ) = ( i _C i ) ) |
| 617 |
|
bcnn |
|- ( i e. NN0 -> ( i _C i ) = 1 ) |
| 618 |
187 617
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i _C i ) = 1 ) |
| 619 |
616 618
|
eqtrd |
|- ( i e. ( 0 ..^ N ) -> ( i _C ( ( i + 1 ) - 1 ) ) = 1 ) |
| 620 |
503 614
|
addcld |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. CC ) |
| 621 |
620
|
subidd |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) - ( i + 1 ) ) = 0 ) |
| 622 |
621
|
fveq2d |
|- ( i e. ( 0 ..^ N ) -> ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) = ( D ` 0 ) ) |
| 623 |
622
|
fveq1d |
|- ( i e. ( 0 ..^ N ) -> ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) = ( ( D ` 0 ) ` x ) ) |
| 624 |
623
|
oveq2d |
|- ( i e. ( 0 ..^ N ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) |
| 625 |
619 624
|
oveq12d |
|- ( i e. ( 0 ..^ N ) -> ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) ) |
| 626 |
625
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) ) |
| 627 |
|
simpl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ph ) |
| 628 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( 0 ... N ) ) |
| 629 |
628
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( i + 1 ) e. ( 0 ... N ) ) |
| 630 |
|
nfv |
|- F/ k ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) |
| 631 |
|
nfcv |
|- F/_ k ( i + 1 ) |
| 632 |
345 631
|
nffv |
|- F/_ k ( C ` ( i + 1 ) ) |
| 633 |
632 348 349
|
nff |
|- F/ k ( C ` ( i + 1 ) ) : X --> CC |
| 634 |
630 633
|
nfim |
|- F/ k ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( C ` ( i + 1 ) ) : X --> CC ) |
| 635 |
|
ovex |
|- ( i + 1 ) e. _V |
| 636 |
|
eleq1 |
|- ( k = ( i + 1 ) -> ( k e. ( 0 ... N ) <-> ( i + 1 ) e. ( 0 ... N ) ) ) |
| 637 |
636
|
anbi2d |
|- ( k = ( i + 1 ) -> ( ( ph /\ k e. ( 0 ... N ) ) <-> ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) ) ) |
| 638 |
|
fveq2 |
|- ( k = ( i + 1 ) -> ( C ` k ) = ( C ` ( i + 1 ) ) ) |
| 639 |
638
|
feq1d |
|- ( k = ( i + 1 ) -> ( ( C ` k ) : X --> CC <-> ( C ` ( i + 1 ) ) : X --> CC ) ) |
| 640 |
637 639
|
imbi12d |
|- ( k = ( i + 1 ) -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) : X --> CC ) <-> ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( C ` ( i + 1 ) ) : X --> CC ) ) ) |
| 641 |
634 635 640 229
|
vtoclf |
|- ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( C ` ( i + 1 ) ) : X --> CC ) |
| 642 |
627 629 641
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( C ` ( i + 1 ) ) : X --> CC ) |
| 643 |
642
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( C ` ( i + 1 ) ) ` x ) e. CC ) |
| 644 |
|
nfv |
|- F/ k ( ph /\ 0 e. ( 0 ... N ) ) |
| 645 |
|
nfcv |
|- F/_ k 0 |
| 646 |
459 645
|
nffv |
|- F/_ k ( D ` 0 ) |
| 647 |
646 348 349
|
nff |
|- F/ k ( D ` 0 ) : X --> CC |
| 648 |
644 647
|
nfim |
|- F/ k ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( D ` 0 ) : X --> CC ) |
| 649 |
|
c0ex |
|- 0 e. _V |
| 650 |
|
eleq1 |
|- ( k = 0 -> ( k e. ( 0 ... N ) <-> 0 e. ( 0 ... N ) ) ) |
| 651 |
650
|
anbi2d |
|- ( k = 0 -> ( ( ph /\ k e. ( 0 ... N ) ) <-> ( ph /\ 0 e. ( 0 ... N ) ) ) ) |
| 652 |
|
fveq2 |
|- ( k = 0 -> ( D ` k ) = ( D ` 0 ) ) |
| 653 |
652
|
feq1d |
|- ( k = 0 -> ( ( D ` k ) : X --> CC <-> ( D ` 0 ) : X --> CC ) ) |
| 654 |
651 653
|
imbi12d |
|- ( k = 0 -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) <-> ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( D ` 0 ) : X --> CC ) ) ) |
| 655 |
648 649 654 582
|
vtoclf |
|- ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( D ` 0 ) : X --> CC ) |
| 656 |
12 117 655
|
syl2anc |
|- ( ph -> ( D ` 0 ) : X --> CC ) |
| 657 |
656
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( D ` 0 ) : X --> CC ) |
| 658 |
657
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( D ` 0 ) ` x ) e. CC ) |
| 659 |
643 658
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) e. CC ) |
| 660 |
659
|
mullidd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) |
| 661 |
626 660
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) |
| 662 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 663 |
662
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
| 664 |
13
|
eqcomi |
|- ( ZZ>= ` 0 ) = NN0 |
| 665 |
663 664
|
eqtr2i |
|- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
| 666 |
665
|
a1i |
|- ( i e. ( 0 ..^ N ) -> NN0 = ( ZZ>= ` ( 1 - 1 ) ) ) |
| 667 |
187 666
|
eleqtrd |
|- ( i e. ( 0 ..^ N ) -> i e. ( ZZ>= ` ( 1 - 1 ) ) ) |
| 668 |
|
fzdifsuc2 |
|- ( i e. ( ZZ>= ` ( 1 - 1 ) ) -> ( 1 ... i ) = ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ) |
| 669 |
667 668
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( 1 ... i ) = ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ) |
| 670 |
669
|
eqcomd |
|- ( i e. ( 0 ..^ N ) -> ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) = ( 1 ... i ) ) |
| 671 |
670
|
sumeq1d |
|- ( i e. ( 0 ..^ N ) -> sum_ j e. ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
| 672 |
671
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) |
| 673 |
661 672
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i _C ( ( i + 1 ) - 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ j e. ( ( 1 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) ) |
| 674 |
513 613 673
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... ( i + 1 ) ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` ( ( j - 1 ) + 1 ) ) ` x ) x. ( ( D ` ( i - ( j - 1 ) ) ) ` x ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) ) |
| 675 |
491 495 674
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) ) |
| 676 |
|
nfcv |
|- F/_ k ( i _C 0 ) |
| 677 |
345 645
|
nffv |
|- F/_ k ( C ` 0 ) |
| 678 |
677 456
|
nffv |
|- F/_ k ( ( C ` 0 ) ` x ) |
| 679 |
|
nfcv |
|- F/_ k ( ( i + 1 ) - 0 ) |
| 680 |
459 679
|
nffv |
|- F/_ k ( D ` ( ( i + 1 ) - 0 ) ) |
| 681 |
680 456
|
nffv |
|- F/_ k ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) |
| 682 |
678 453 681
|
nfov |
|- F/_ k ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) |
| 683 |
676 453 682
|
nfov |
|- F/_ k ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) |
| 684 |
664
|
a1i |
|- ( i e. ( 0 ..^ N ) -> ( ZZ>= ` 0 ) = NN0 ) |
| 685 |
187 684
|
eleqtrrd |
|- ( i e. ( 0 ..^ N ) -> i e. ( ZZ>= ` 0 ) ) |
| 686 |
|
eluzfz1 |
|- ( i e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... i ) ) |
| 687 |
685 686
|
syl |
|- ( i e. ( 0 ..^ N ) -> 0 e. ( 0 ... i ) ) |
| 688 |
687
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> 0 e. ( 0 ... i ) ) |
| 689 |
|
oveq2 |
|- ( k = 0 -> ( i _C k ) = ( i _C 0 ) ) |
| 690 |
110
|
fveq1d |
|- ( k = 0 -> ( ( C ` k ) ` x ) = ( ( C ` 0 ) ` x ) ) |
| 691 |
|
oveq2 |
|- ( k = 0 -> ( ( i + 1 ) - k ) = ( ( i + 1 ) - 0 ) ) |
| 692 |
691
|
fveq2d |
|- ( k = 0 -> ( D ` ( ( i + 1 ) - k ) ) = ( D ` ( ( i + 1 ) - 0 ) ) ) |
| 693 |
692
|
fveq1d |
|- ( k = 0 -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) = ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) |
| 694 |
690 693
|
oveq12d |
|- ( k = 0 -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) = ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) |
| 695 |
689 694
|
oveq12d |
|- ( k = 0 -> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) ) |
| 696 |
470 683 439 441 688 695
|
fsumsplit1 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 697 |
620
|
subid1d |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) - 0 ) = ( i + 1 ) ) |
| 698 |
697
|
fveq2d |
|- ( i e. ( 0 ..^ N ) -> ( D ` ( ( i + 1 ) - 0 ) ) = ( D ` ( i + 1 ) ) ) |
| 699 |
698
|
fveq1d |
|- ( i e. ( 0 ..^ N ) -> ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) = ( ( D ` ( i + 1 ) ) ` x ) ) |
| 700 |
699
|
oveq2d |
|- ( i e. ( 0 ..^ N ) -> ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) = ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) |
| 701 |
700
|
oveq2d |
|- ( i e. ( 0 ..^ N ) -> ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) = ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
| 702 |
701
|
oveq1d |
|- ( i e. ( 0 ..^ N ) -> ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 703 |
702
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 704 |
|
bcn0 |
|- ( i e. NN0 -> ( i _C 0 ) = 1 ) |
| 705 |
187 704
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i _C 0 ) = 1 ) |
| 706 |
705
|
oveq1d |
|- ( i e. ( 0 ..^ N ) -> ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
| 707 |
706
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
| 708 |
677 348 349
|
nff |
|- F/ k ( C ` 0 ) : X --> CC |
| 709 |
644 708
|
nfim |
|- F/ k ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( C ` 0 ) : X --> CC ) |
| 710 |
110
|
feq1d |
|- ( k = 0 -> ( ( C ` k ) : X --> CC <-> ( C ` 0 ) : X --> CC ) ) |
| 711 |
651 710
|
imbi12d |
|- ( k = 0 -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( C ` k ) : X --> CC ) <-> ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( C ` 0 ) : X --> CC ) ) ) |
| 712 |
709 649 711 229
|
vtoclf |
|- ( ( ph /\ 0 e. ( 0 ... N ) ) -> ( C ` 0 ) : X --> CC ) |
| 713 |
12 117 712
|
syl2anc |
|- ( ph -> ( C ` 0 ) : X --> CC ) |
| 714 |
713
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( C ` 0 ) : X --> CC ) |
| 715 |
714
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( C ` 0 ) ` x ) e. CC ) |
| 716 |
459 631
|
nffv |
|- F/_ k ( D ` ( i + 1 ) ) |
| 717 |
716 348 349
|
nff |
|- F/ k ( D ` ( i + 1 ) ) : X --> CC |
| 718 |
630 717
|
nfim |
|- F/ k ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( D ` ( i + 1 ) ) : X --> CC ) |
| 719 |
|
fveq2 |
|- ( k = ( i + 1 ) -> ( D ` k ) = ( D ` ( i + 1 ) ) ) |
| 720 |
719
|
feq1d |
|- ( k = ( i + 1 ) -> ( ( D ` k ) : X --> CC <-> ( D ` ( i + 1 ) ) : X --> CC ) ) |
| 721 |
637 720
|
imbi12d |
|- ( k = ( i + 1 ) -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) <-> ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( D ` ( i + 1 ) ) : X --> CC ) ) ) |
| 722 |
718 635 721 582
|
vtoclf |
|- ( ( ph /\ ( i + 1 ) e. ( 0 ... N ) ) -> ( D ` ( i + 1 ) ) : X --> CC ) |
| 723 |
627 629 722
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( D ` ( i + 1 ) ) : X --> CC ) |
| 724 |
723
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( D ` ( i + 1 ) ) ` x ) e. CC ) |
| 725 |
715 724
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) e. CC ) |
| 726 |
725
|
mullidd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) = ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) |
| 727 |
707 726
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) = ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) |
| 728 |
|
nfv |
|- F/ j i e. ( 0 ..^ N ) |
| 729 |
|
1zzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> 1 e. ZZ ) |
| 730 |
234
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> i e. ZZ ) |
| 731 |
|
eldifi |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. ( 0 ... i ) ) |
| 732 |
|
elfzelz |
|- ( j e. ( 0 ... i ) -> j e. ZZ ) |
| 733 |
731 732
|
syl |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. ZZ ) |
| 734 |
733
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> j e. ZZ ) |
| 735 |
|
elfznn0 |
|- ( j e. ( 0 ... i ) -> j e. NN0 ) |
| 736 |
731 735
|
syl |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. NN0 ) |
| 737 |
|
eldifsni |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j =/= 0 ) |
| 738 |
736 737
|
jca |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> ( j e. NN0 /\ j =/= 0 ) ) |
| 739 |
|
elnnne0 |
|- ( j e. NN <-> ( j e. NN0 /\ j =/= 0 ) ) |
| 740 |
738 739
|
sylibr |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. NN ) |
| 741 |
|
nnge1 |
|- ( j e. NN -> 1 <_ j ) |
| 742 |
740 741
|
syl |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> 1 <_ j ) |
| 743 |
742
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> 1 <_ j ) |
| 744 |
|
elfzle2 |
|- ( j e. ( 0 ... i ) -> j <_ i ) |
| 745 |
731 744
|
syl |
|- ( j e. ( ( 0 ... i ) \ { 0 } ) -> j <_ i ) |
| 746 |
745
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> j <_ i ) |
| 747 |
729 730 734 743 746
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( ( 0 ... i ) \ { 0 } ) ) -> j e. ( 1 ... i ) ) |
| 748 |
747
|
ex |
|- ( i e. ( 0 ..^ N ) -> ( j e. ( ( 0 ... i ) \ { 0 } ) -> j e. ( 1 ... i ) ) ) |
| 749 |
|
0zd |
|- ( j e. ( 1 ... i ) -> 0 e. ZZ ) |
| 750 |
|
elfzel2 |
|- ( j e. ( 1 ... i ) -> i e. ZZ ) |
| 751 |
|
elfzelz |
|- ( j e. ( 1 ... i ) -> j e. ZZ ) |
| 752 |
173
|
a1i |
|- ( j e. ( 1 ... i ) -> 0 e. RR ) |
| 753 |
751
|
zred |
|- ( j e. ( 1 ... i ) -> j e. RR ) |
| 754 |
|
1red |
|- ( j e. ( 1 ... i ) -> 1 e. RR ) |
| 755 |
531
|
a1i |
|- ( j e. ( 1 ... i ) -> 0 < 1 ) |
| 756 |
|
elfzle1 |
|- ( j e. ( 1 ... i ) -> 1 <_ j ) |
| 757 |
752 754 753 755 756
|
ltletrd |
|- ( j e. ( 1 ... i ) -> 0 < j ) |
| 758 |
752 753 757
|
ltled |
|- ( j e. ( 1 ... i ) -> 0 <_ j ) |
| 759 |
|
elfzle2 |
|- ( j e. ( 1 ... i ) -> j <_ i ) |
| 760 |
749 750 751 758 759
|
elfzd |
|- ( j e. ( 1 ... i ) -> j e. ( 0 ... i ) ) |
| 761 |
752 757
|
gtned |
|- ( j e. ( 1 ... i ) -> j =/= 0 ) |
| 762 |
|
nelsn |
|- ( j =/= 0 -> -. j e. { 0 } ) |
| 763 |
761 762
|
syl |
|- ( j e. ( 1 ... i ) -> -. j e. { 0 } ) |
| 764 |
760 763
|
eldifd |
|- ( j e. ( 1 ... i ) -> j e. ( ( 0 ... i ) \ { 0 } ) ) |
| 765 |
764
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> j e. ( ( 0 ... i ) \ { 0 } ) ) |
| 766 |
765
|
ex |
|- ( i e. ( 0 ..^ N ) -> ( j e. ( 1 ... i ) -> j e. ( ( 0 ... i ) \ { 0 } ) ) ) |
| 767 |
748 766
|
impbid |
|- ( i e. ( 0 ..^ N ) -> ( j e. ( ( 0 ... i ) \ { 0 } ) <-> j e. ( 1 ... i ) ) ) |
| 768 |
728 767
|
alrimi |
|- ( i e. ( 0 ..^ N ) -> A. j ( j e. ( ( 0 ... i ) \ { 0 } ) <-> j e. ( 1 ... i ) ) ) |
| 769 |
|
dfcleq |
|- ( ( ( 0 ... i ) \ { 0 } ) = ( 1 ... i ) <-> A. j ( j e. ( ( 0 ... i ) \ { 0 } ) <-> j e. ( 1 ... i ) ) ) |
| 770 |
768 769
|
sylibr |
|- ( i e. ( 0 ..^ N ) -> ( ( 0 ... i ) \ { 0 } ) = ( 1 ... i ) ) |
| 771 |
770
|
sumeq1d |
|- ( i e. ( 0 ..^ N ) -> sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 772 |
771
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 773 |
727 772
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 774 |
696 703 773
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 775 |
675 774
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
| 776 |
|
fzfid |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 ... i ) e. Fin ) |
| 777 |
187
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> i e. NN0 ) |
| 778 |
765 733
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> j e. ZZ ) |
| 779 |
|
1zzd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> 1 e. ZZ ) |
| 780 |
778 779
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> ( j - 1 ) e. ZZ ) |
| 781 |
777 780
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> ( i _C ( j - 1 ) ) e. NN0 ) |
| 782 |
781
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ j e. ( 1 ... i ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
| 783 |
782
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 1 ... i ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
| 784 |
783
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( i _C ( j - 1 ) ) e. CC ) |
| 785 |
|
simpl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) ) |
| 786 |
|
fzelp1 |
|- ( j e. ( 1 ... i ) -> j e. ( 1 ... ( i + 1 ) ) ) |
| 787 |
786
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> j e. ( 1 ... ( i + 1 ) ) ) |
| 788 |
785 787 551
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( C ` j ) ` x ) e. CC ) |
| 789 |
787 586
|
syldan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( D ` ( ( i + 1 ) - j ) ) ` x ) e. CC ) |
| 790 |
788 789
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) e. CC ) |
| 791 |
784 790
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ j e. ( 1 ... i ) ) -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) e. CC ) |
| 792 |
776 791
|
fsumcl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) e. CC ) |
| 793 |
187
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> i e. NN0 ) |
| 794 |
|
elfzelz |
|- ( k e. ( 1 ... i ) -> k e. ZZ ) |
| 795 |
794
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> k e. ZZ ) |
| 796 |
793 795
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i _C k ) e. NN0 ) |
| 797 |
796
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i _C k ) e. CC ) |
| 798 |
797
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 1 ... i ) ) -> ( i _C k ) e. CC ) |
| 799 |
798
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( i _C k ) e. CC ) |
| 800 |
|
simpll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ph /\ i e. ( 0 ..^ N ) ) ) |
| 801 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> x e. X ) |
| 802 |
760
|
ssriv |
|- ( 1 ... i ) C_ ( 0 ... i ) |
| 803 |
|
id |
|- ( k e. ( 1 ... i ) -> k e. ( 1 ... i ) ) |
| 804 |
802 803
|
sselid |
|- ( k e. ( 1 ... i ) -> k e. ( 0 ... i ) ) |
| 805 |
804
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> k e. ( 0 ... i ) ) |
| 806 |
800 801 805 433
|
syl21anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( C ` k ) ` x ) e. CC ) |
| 807 |
805 435
|
syldan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) |
| 808 |
806 807
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) e. CC ) |
| 809 |
799 808
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
| 810 |
776 809
|
fsumcl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
| 811 |
659 792 725 810
|
add4d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
| 812 |
|
oveq1 |
|- ( j = k -> ( j - 1 ) = ( k - 1 ) ) |
| 813 |
812
|
oveq2d |
|- ( j = k -> ( i _C ( j - 1 ) ) = ( i _C ( k - 1 ) ) ) |
| 814 |
|
fveq2 |
|- ( j = k -> ( C ` j ) = ( C ` k ) ) |
| 815 |
814
|
fveq1d |
|- ( j = k -> ( ( C ` j ) ` x ) = ( ( C ` k ) ` x ) ) |
| 816 |
|
oveq2 |
|- ( j = k -> ( ( i + 1 ) - j ) = ( ( i + 1 ) - k ) ) |
| 817 |
816
|
fveq2d |
|- ( j = k -> ( D ` ( ( i + 1 ) - j ) ) = ( D ` ( ( i + 1 ) - k ) ) ) |
| 818 |
817
|
fveq1d |
|- ( j = k -> ( ( D ` ( ( i + 1 ) - j ) ) ` x ) = ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) |
| 819 |
815 818
|
oveq12d |
|- ( j = k -> ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) = ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
| 820 |
813 819
|
oveq12d |
|- ( j = k -> ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 821 |
|
nfcv |
|- F/_ k ( i _C ( j - 1 ) ) |
| 822 |
347 456
|
nffv |
|- F/_ k ( ( C ` j ) ` x ) |
| 823 |
569 456
|
nffv |
|- F/_ k ( ( D ` ( ( i + 1 ) - j ) ) ` x ) |
| 824 |
822 453 823
|
nfov |
|- F/_ k ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) |
| 825 |
821 453 824
|
nfov |
|- F/_ k ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) |
| 826 |
|
nfcv |
|- F/_ j ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
| 827 |
820 825 826
|
cbvsum |
|- sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) |
| 828 |
827
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) = sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 829 |
828
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 830 |
|
peano2zm |
|- ( k e. ZZ -> ( k - 1 ) e. ZZ ) |
| 831 |
795 830
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( k - 1 ) e. ZZ ) |
| 832 |
793 831
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i _C ( k - 1 ) ) e. NN0 ) |
| 833 |
832
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i _C ( k - 1 ) ) e. CC ) |
| 834 |
833
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 1 ... i ) ) -> ( i _C ( k - 1 ) ) e. CC ) |
| 835 |
834
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( i _C ( k - 1 ) ) e. CC ) |
| 836 |
835 808
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
| 837 |
776 836 809
|
fsumadd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 838 |
837
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ k e. ( 1 ... i ) ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 1 ... i ) ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 839 |
833 797
|
addcomd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i _C ( k - 1 ) ) + ( i _C k ) ) = ( ( i _C k ) + ( i _C ( k - 1 ) ) ) ) |
| 840 |
|
bcpasc |
|- ( ( i e. NN0 /\ k e. ZZ ) -> ( ( i _C k ) + ( i _C ( k - 1 ) ) ) = ( ( i + 1 ) _C k ) ) |
| 841 |
793 795 840
|
syl2anc |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i _C k ) + ( i _C ( k - 1 ) ) ) = ( ( i + 1 ) _C k ) ) |
| 842 |
839 841
|
eqtr2d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) = ( ( i _C ( k - 1 ) ) + ( i _C k ) ) ) |
| 843 |
842
|
oveq1d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C ( k - 1 ) ) + ( i _C k ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 844 |
843
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 1 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C ( k - 1 ) ) + ( i _C k ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 845 |
844
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C ( k - 1 ) ) + ( i _C k ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 846 |
835 799 808
|
adddird |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( i _C ( k - 1 ) ) + ( i _C k ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 847 |
845 846
|
eqtr2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 848 |
847
|
sumeq2dv |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( ( i _C ( k - 1 ) ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) + ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 849 |
829 838 848
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 850 |
849
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 851 |
|
peano2nn0 |
|- ( i e. NN0 -> ( i + 1 ) e. NN0 ) |
| 852 |
793 851
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( i + 1 ) e. NN0 ) |
| 853 |
852 795
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) e. NN0 ) |
| 854 |
853
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
| 855 |
854
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
| 856 |
855
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
| 857 |
856 808
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 1 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
| 858 |
776 857
|
fsumcl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
| 859 |
659 725 858
|
addassd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) |
| 860 |
187 851
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. NN0 ) |
| 861 |
|
bcn0 |
|- ( ( i + 1 ) e. NN0 -> ( ( i + 1 ) _C 0 ) = 1 ) |
| 862 |
860 861
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) _C 0 ) = 1 ) |
| 863 |
862 700
|
oveq12d |
|- ( i e. ( 0 ..^ N ) -> ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
| 864 |
863
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) ) |
| 865 |
864 726
|
eqtr2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) = ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) ) |
| 866 |
770
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( 0 ... i ) \ { 0 } ) = ( 1 ... i ) ) |
| 867 |
866
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 ... i ) = ( ( 0 ... i ) \ { 0 } ) ) |
| 868 |
867
|
sumeq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 869 |
865 868
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 870 |
|
nfcv |
|- F/_ k ( ( i + 1 ) _C 0 ) |
| 871 |
870 453 682
|
nfov |
|- F/_ k ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) |
| 872 |
199 851
|
syl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( i + 1 ) e. NN0 ) |
| 873 |
872 201
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) _C k ) e. NN0 ) |
| 874 |
873
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
| 875 |
874
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
| 876 |
875
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
| 877 |
876 436
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... i ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
| 878 |
|
oveq2 |
|- ( k = 0 -> ( ( i + 1 ) _C k ) = ( ( i + 1 ) _C 0 ) ) |
| 879 |
878 694
|
oveq12d |
|- ( k = 0 -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) ) |
| 880 |
470 871 439 877 688 879
|
fsumsplit1 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 881 |
880
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( i + 1 ) _C 0 ) x. ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( ( i + 1 ) - 0 ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... i ) \ { 0 } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 882 |
869 881
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 883 |
882
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 884 |
|
bcnn |
|- ( ( i + 1 ) e. NN0 -> ( ( i + 1 ) _C ( i + 1 ) ) = 1 ) |
| 885 |
860 884
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( ( i + 1 ) _C ( i + 1 ) ) = 1 ) |
| 886 |
885
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( i + 1 ) _C ( i + 1 ) ) = 1 ) |
| 887 |
886
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) ) |
| 888 |
622
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) = ( D ` 0 ) ) |
| 889 |
888
|
feq1d |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) : X --> CC <-> ( D ` 0 ) : X --> CC ) ) |
| 890 |
657 889
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) : X --> CC ) |
| 891 |
890
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) : X --> CC ) |
| 892 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> x e. X ) |
| 893 |
891 892
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) e. CC ) |
| 894 |
643 893
|
mulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) e. CC ) |
| 895 |
894
|
mullidd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 1 x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
| 896 |
624
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) ) |
| 897 |
887 895 896
|
3eqtrrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) = ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) ) |
| 898 |
|
fzdifsuc |
|- ( i e. ( ZZ>= ` 0 ) -> ( 0 ... i ) = ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ) |
| 899 |
685 898
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( 0 ... i ) = ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ) |
| 900 |
899
|
sumeq1d |
|- ( i e. ( 0 ..^ N ) -> sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 901 |
900
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 902 |
897 901
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + sum_ k e. ( 0 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = ( ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 903 |
|
nfcv |
|- F/_ k ( ( i + 1 ) _C ( i + 1 ) ) |
| 904 |
632 456
|
nffv |
|- F/_ k ( ( C ` ( i + 1 ) ) ` x ) |
| 905 |
|
nfcv |
|- F/_ k ( ( i + 1 ) - ( i + 1 ) ) |
| 906 |
459 905
|
nffv |
|- F/_ k ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) |
| 907 |
906 456
|
nffv |
|- F/_ k ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) |
| 908 |
904 453 907
|
nfov |
|- F/_ k ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) |
| 909 |
903 453 908
|
nfov |
|- F/_ k ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
| 910 |
|
fzfid |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( 0 ... ( i + 1 ) ) e. Fin ) |
| 911 |
860
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( i + 1 ) e. NN0 ) |
| 912 |
|
elfzelz |
|- ( k e. ( 0 ... ( i + 1 ) ) -> k e. ZZ ) |
| 913 |
912
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k e. ZZ ) |
| 914 |
911 913
|
bccld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) _C k ) e. NN0 ) |
| 915 |
914
|
nn0cnd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
| 916 |
915
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
| 917 |
916
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) _C k ) e. CC ) |
| 918 |
627
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ph ) |
| 919 |
96
|
a1i |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> 0 e. ZZ ) |
| 920 |
208
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> N e. ZZ ) |
| 921 |
|
elfzle1 |
|- ( k e. ( 0 ... ( i + 1 ) ) -> 0 <_ k ) |
| 922 |
921
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> 0 <_ k ) |
| 923 |
913
|
zred |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k e. RR ) |
| 924 |
911
|
nn0red |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( i + 1 ) e. RR ) |
| 925 |
213
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> N e. RR ) |
| 926 |
|
elfzle2 |
|- ( k e. ( 0 ... ( i + 1 ) ) -> k <_ ( i + 1 ) ) |
| 927 |
926
|
adantl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k <_ ( i + 1 ) ) |
| 928 |
301
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( i + 1 ) <_ N ) |
| 929 |
923 924 925 927 928
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k <_ N ) |
| 930 |
919 920 913 922 929
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k e. ( 0 ... N ) ) |
| 931 |
930
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> k e. ( 0 ... N ) ) |
| 932 |
918 931 229
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( C ` k ) : X --> CC ) |
| 933 |
932
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( C ` k ) : X --> CC ) |
| 934 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> x e. X ) |
| 935 |
933 934
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( C ` k ) ` x ) e. CC ) |
| 936 |
918
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ph ) |
| 937 |
590
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( i + 1 ) e. ZZ ) |
| 938 |
937 913
|
zsubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. ZZ ) |
| 939 |
924 923
|
subge0d |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( 0 <_ ( ( i + 1 ) - k ) <-> k <_ ( i + 1 ) ) ) |
| 940 |
927 939
|
mpbird |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> 0 <_ ( ( i + 1 ) - k ) ) |
| 941 |
924 923
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. RR ) |
| 942 |
925 923
|
resubcld |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( N - k ) e. RR ) |
| 943 |
925 173 247
|
sylancl |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( N - 0 ) e. RR ) |
| 944 |
924 925 923 928
|
lesub1dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) <_ ( N - k ) ) |
| 945 |
173
|
a1i |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> 0 e. RR ) |
| 946 |
945 923 925 922
|
lesub2dd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( N - k ) <_ ( N - 0 ) ) |
| 947 |
941 942 943 944 946
|
letrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) <_ ( N - 0 ) ) |
| 948 |
253
|
adantr |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( N - 0 ) = N ) |
| 949 |
947 948
|
breqtrd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) <_ N ) |
| 950 |
919 920 938 940 949
|
elfzd |
|- ( ( i e. ( 0 ..^ N ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
| 951 |
950
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
| 952 |
951
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( i + 1 ) - k ) e. ( 0 ... N ) ) |
| 953 |
|
fveq2 |
|- ( j = ( ( i + 1 ) - k ) -> ( D ` j ) = ( D ` ( ( i + 1 ) - k ) ) ) |
| 954 |
953
|
feq1d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( D ` j ) : X --> CC <-> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) ) |
| 955 |
310 954
|
imbi12d |
|- ( j = ( ( i + 1 ) - k ) -> ( ( ( ph /\ j e. ( 0 ... N ) ) -> ( D ` j ) : X --> CC ) <-> ( ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) ) ) |
| 956 |
459 346
|
nffv |
|- F/_ k ( D ` j ) |
| 957 |
956 348 349
|
nff |
|- F/ k ( D ` j ) : X --> CC |
| 958 |
343 957
|
nfim |
|- F/ k ( ( ph /\ j e. ( 0 ... N ) ) -> ( D ` j ) : X --> CC ) |
| 959 |
|
fveq2 |
|- ( k = j -> ( D ` k ) = ( D ` j ) ) |
| 960 |
959
|
feq1d |
|- ( k = j -> ( ( D ` k ) : X --> CC <-> ( D ` j ) : X --> CC ) ) |
| 961 |
267 960
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. ( 0 ... N ) ) -> ( D ` k ) : X --> CC ) <-> ( ( ph /\ j e. ( 0 ... N ) ) -> ( D ` j ) : X --> CC ) ) ) |
| 962 |
958 961 582
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ... N ) ) -> ( D ` j ) : X --> CC ) |
| 963 |
308 955 962
|
vtocl |
|- ( ( ph /\ ( ( i + 1 ) - k ) e. ( 0 ... N ) ) -> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) |
| 964 |
936 952 963
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( D ` ( ( i + 1 ) - k ) ) : X --> CC ) |
| 965 |
964 934
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) e. CC ) |
| 966 |
935 965
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) e. CC ) |
| 967 |
917 966
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) /\ k e. ( 0 ... ( i + 1 ) ) ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) e. CC ) |
| 968 |
860 684
|
eleqtrrd |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( ZZ>= ` 0 ) ) |
| 969 |
|
eluzfz2 |
|- ( ( i + 1 ) e. ( ZZ>= ` 0 ) -> ( i + 1 ) e. ( 0 ... ( i + 1 ) ) ) |
| 970 |
968 969
|
syl |
|- ( i e. ( 0 ..^ N ) -> ( i + 1 ) e. ( 0 ... ( i + 1 ) ) ) |
| 971 |
970
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( i + 1 ) e. ( 0 ... ( i + 1 ) ) ) |
| 972 |
|
oveq2 |
|- ( k = ( i + 1 ) -> ( ( i + 1 ) _C k ) = ( ( i + 1 ) _C ( i + 1 ) ) ) |
| 973 |
638
|
fveq1d |
|- ( k = ( i + 1 ) -> ( ( C ` k ) ` x ) = ( ( C ` ( i + 1 ) ) ` x ) ) |
| 974 |
|
oveq2 |
|- ( k = ( i + 1 ) -> ( ( i + 1 ) - k ) = ( ( i + 1 ) - ( i + 1 ) ) ) |
| 975 |
974
|
fveq2d |
|- ( k = ( i + 1 ) -> ( D ` ( ( i + 1 ) - k ) ) = ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ) |
| 976 |
975
|
fveq1d |
|- ( k = ( i + 1 ) -> ( ( D ` ( ( i + 1 ) - k ) ) ` x ) = ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) |
| 977 |
973 976
|
oveq12d |
|- ( k = ( i + 1 ) -> ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) = ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) |
| 978 |
972 977
|
oveq12d |
|- ( k = ( i + 1 ) -> ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) ) |
| 979 |
470 909 910 967 971 978
|
fsumsplit1 |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) = ( ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 980 |
979
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( i + 1 ) _C ( i + 1 ) ) x. ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` ( ( i + 1 ) - ( i + 1 ) ) ) ` x ) ) ) + sum_ k e. ( ( 0 ... ( i + 1 ) ) \ { ( i + 1 ) } ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 981 |
883 902 980
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) + sum_ k e. ( 1 ... i ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 982 |
850 859 981
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( ( ( ( ( C ` ( i + 1 ) ) ` x ) x. ( ( D ` 0 ) ` x ) ) + ( ( ( C ` 0 ) ` x ) x. ( ( D ` ( i + 1 ) ) ` x ) ) ) + ( sum_ j e. ( 1 ... i ) ( ( i _C ( j - 1 ) ) x. ( ( ( C ` j ) ` x ) x. ( ( D ` ( ( i + 1 ) - j ) ) ` x ) ) ) + sum_ k e. ( 1 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 983 |
775 811 982
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> ( sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) + sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 984 |
438 442 983
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. X ) -> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) = sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) |
| 985 |
984
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( ( C ` ( k + 1 ) ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) + ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 986 |
422 985
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( S _D ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 987 |
986
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( S _D ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 988 |
191 193 987
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 989 |
180 181 184 988
|
syl21anc |
|- ( ( i e. ( 0 ..^ N ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) |
| 990 |
989
|
3exp |
|- ( i e. ( 0 ..^ N ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` i ) = ( x e. X |-> sum_ k e. ( 0 ... i ) ( ( i _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( i - k ) ) ` x ) ) ) ) ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` ( i + 1 ) ) = ( x e. X |-> sum_ k e. ( 0 ... ( i + 1 ) ) ( ( ( i + 1 ) _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( ( i + 1 ) - k ) ) ` x ) ) ) ) ) ) ) |
| 991 |
44 57 70 83 179 990
|
fzind2 |
|- ( n e. ( 0 ... N ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` n ) = ( x e. X |-> sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( n - k ) ) ` x ) ) ) ) ) ) |
| 992 |
31 991
|
vtoclg |
|- ( N e. NN0 -> ( N e. ( 0 ... N ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) ) |
| 993 |
5 16 992
|
sylc |
|- ( ph -> ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) ) |
| 994 |
12 993
|
mpd |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A x. B ) ) ) ` N ) = ( x e. X |-> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( ( C ` k ) ` x ) x. ( ( D ` ( N - k ) ) ` x ) ) ) ) ) |